Answer to Question #189381 in Differential Equations for Aniket

Question #189381

Fourier cosine integral of f(x) is


A)


cos Ax ff(t)sina tdt da 0


d cos 2x ff(t) cos at dt da


B) cosax ff(t)sintdtdx


D) 25 fcos Ax f f(t)cos At dt da


1
Expert's answer
2021-05-07T14:05:02-0400

F(f(x))=2π0acos(at)cos(ωt)  dt=12π0acos((aω)t)+cos((a+ω)t)dt=12π0asin((aω)t)aω+sin((a+ω)t)a+ωdt=12πsin((aω)a)aω+sin((a+ω)a)a+ωdt\begin{aligned} \mathcal{F}(f(x)) &= \sqrt{\frac{2}{\pi}}\int_0^a \cos(at)\cos(\omega t) \,\,\mathrm{d}t\\ &= \frac{1}{\sqrt{2\pi}}\int_0^a \cos((a - \omega)t) + \cos((a + \omega)t) \mathrm{d}t \\&= \frac{1}{\sqrt{2\pi}}\int_0^a \frac{\sin((a - \omega)t)}{a - \omega} + \frac{\sin((a + \omega)t)}{a + \omega}\mathrm{d}t \\&= \frac{1}{\sqrt{2\pi}}\frac{\sin((a - \omega)a)}{a - \omega} + \frac{\sin((a + \omega)a)}{a + \omega}\mathrm{d}t \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment