Answer to Question #189381 in Differential Equations for Aniket

Question #189381

Fourier cosine integral of f(x) is


A)


cos Ax ff(t)sina tdt da 0


d cos 2x ff(t) cos at dt da


B) cosax ff(t)sintdtdx


D) 25 fcos Ax f f(t)cos At dt da


1
Expert's answer
2021-05-07T14:05:02-0400

"\\begin{aligned}\n\\mathcal{F}(f(x)) &= \\sqrt{\\frac{2}{\\pi}}\\int_0^a \\cos(at)\\cos(\\omega t) \\,\\,\\mathrm{d}t\\\\\n&= \\frac{1}{\\sqrt{2\\pi}}\\int_0^a \\cos((a - \\omega)t) + \\cos((a + \\omega)t) \\mathrm{d}t\n\\\\&= \\frac{1}{\\sqrt{2\\pi}}\\int_0^a \\frac{\\sin((a - \\omega)t)}{a - \\omega} + \\frac{\\sin((a + \\omega)t)}{a + \\omega}\\mathrm{d}t\n\\\\&= \\frac{1}{\\sqrt{2\\pi}}\\frac{\\sin((a - \\omega)a)}{a - \\omega} + \\frac{\\sin((a + \\omega)a)}{a + \\omega}\\mathrm{d}t\n\\end{aligned}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS