Fourier cosine integral of f(x) is
A)
cos Ax ff(t)sina tdt da 0
d cos 2x ff(t) cos at dt da
B) cosax ff(t)sintdtdx
D) 25 fcos Ax f f(t)cos At dt da
"\\begin{aligned}\n\\mathcal{F}(f(x)) &= \\sqrt{\\frac{2}{\\pi}}\\int_0^a \\cos(at)\\cos(\\omega t) \\,\\,\\mathrm{d}t\\\\\n&= \\frac{1}{\\sqrt{2\\pi}}\\int_0^a \\cos((a - \\omega)t) + \\cos((a + \\omega)t) \\mathrm{d}t\n\\\\&= \\frac{1}{\\sqrt{2\\pi}}\\int_0^a \\frac{\\sin((a - \\omega)t)}{a - \\omega} + \\frac{\\sin((a + \\omega)t)}{a + \\omega}\\mathrm{d}t\n\\\\&= \\frac{1}{\\sqrt{2\\pi}}\\frac{\\sin((a - \\omega)a)}{a - \\omega} + \\frac{\\sin((a + \\omega)a)}{a + \\omega}\\mathrm{d}t\n\\end{aligned}"
Comments
Leave a comment