Fourier cosine integral of f(x) is
A)
cos Ax ff(t)sina tdt da 0
d cos 2x ff(t) cos at dt da
B) cosax ff(t)sintdtdx
D) 25 fcos Ax f f(t)cos At dt da
F(f(x))=2π∫0acos(at)cos(ωt) dt=12π∫0acos((a−ω)t)+cos((a+ω)t)dt=12π∫0asin((a−ω)t)a−ω+sin((a+ω)t)a+ωdt=12πsin((a−ω)a)a−ω+sin((a+ω)a)a+ωdt\begin{aligned} \mathcal{F}(f(x)) &= \sqrt{\frac{2}{\pi}}\int_0^a \cos(at)\cos(\omega t) \,\,\mathrm{d}t\\ &= \frac{1}{\sqrt{2\pi}}\int_0^a \cos((a - \omega)t) + \cos((a + \omega)t) \mathrm{d}t \\&= \frac{1}{\sqrt{2\pi}}\int_0^a \frac{\sin((a - \omega)t)}{a - \omega} + \frac{\sin((a + \omega)t)}{a + \omega}\mathrm{d}t \\&= \frac{1}{\sqrt{2\pi}}\frac{\sin((a - \omega)a)}{a - \omega} + \frac{\sin((a + \omega)a)}{a + \omega}\mathrm{d}t \end{aligned}F(f(x))=π2∫0acos(at)cos(ωt)dt=2π1∫0acos((a−ω)t)+cos((a+ω)t)dt=2π1∫0aa−ωsin((a−ω)t)+a+ωsin((a+ω)t)dt=2π1a−ωsin((a−ω)a)+a+ωsin((a+ω)a)dt
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment