Question #188960

xdx+ydy=a2(xdy-ydx)/x2+y2

1
Expert's answer
2021-05-07T12:01:27-0400

xdx+ydy=a2(xdyydx)x2+y2)d(x2+y2)=a2(xdyydx)x21+y2x2d(x2+y2)=a2d(yx)1+(yx)2 Integrating Both the sidesd(x2+y2)=a2d(yx)1+(yx)2x2+y2=a2arctan(yx)+Cx2+y2a2arctan(yx)=Cxdx+ydy=\dfrac{a^2(xdy-ydx)}{x^2+y^2)}\\[9pt] d(x^2+y^2)=\dfrac{a^2\frac{(xdy-ydx)}{x^2}}{1+\frac{y^2}{x^2}}\\[9pt] d(x^2+y^2)=\dfrac{a^2d(\frac{y}{x})}{1+(\frac{y}{x})^2}\\[9pt] \text{ Integrating Both the sides}\\[9pt] \int d(x^2+y^2)=\int \dfrac{a^2d(\frac{y}{x})}{1+(\frac{y}{x})^2}\\[9pt] \Rightarrow x^2+y^2=a^2arctan(\dfrac{y}{x})+C\\[9pt] \Rightarrow x^2+y^2-a^2arctan(\dfrac{y}{x})=C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS