Answer to Question #188960 in Differential Equations for Shiv

Question #188960

xdx+ydy=a2(xdy-ydx)/x2+y2

1
Expert's answer
2021-05-07T12:01:27-0400

"xdx+ydy=\\dfrac{a^2(xdy-ydx)}{x^2+y^2)}\\\\[9pt]\n\nd(x^2+y^2)=\\dfrac{a^2\\frac{(xdy-ydx)}{x^2}}{1+\\frac{y^2}{x^2}}\\\\[9pt]\n\nd(x^2+y^2)=\\dfrac{a^2d(\\frac{y}{x})}{1+(\\frac{y}{x})^2}\\\\[9pt]\n\n\\text{ Integrating Both the sides}\\\\[9pt]\n\n\\int d(x^2+y^2)=\\int \\dfrac{a^2d(\\frac{y}{x})}{1+(\\frac{y}{x})^2}\\\\[9pt]\n\n\\Rightarrow x^2+y^2=a^2arctan(\\dfrac{y}{x})+C\\\\[9pt]\n\n\\Rightarrow x^2+y^2-a^2arctan(\\dfrac{y}{x})=C"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS