xdx+ydy=a2(xdy-ydx)/x2+y2
"xdx+ydy=\\dfrac{a^2(xdy-ydx)}{x^2+y^2)}\\\\[9pt]\n\nd(x^2+y^2)=\\dfrac{a^2\\frac{(xdy-ydx)}{x^2}}{1+\\frac{y^2}{x^2}}\\\\[9pt]\n\nd(x^2+y^2)=\\dfrac{a^2d(\\frac{y}{x})}{1+(\\frac{y}{x})^2}\\\\[9pt]\n\n\\text{ Integrating Both the sides}\\\\[9pt]\n\n\\int d(x^2+y^2)=\\int \\dfrac{a^2d(\\frac{y}{x})}{1+(\\frac{y}{x})^2}\\\\[9pt]\n\n\\Rightarrow x^2+y^2=a^2arctan(\\dfrac{y}{x})+C\\\\[9pt]\n\n\\Rightarrow x^2+y^2-a^2arctan(\\dfrac{y}{x})=C"
Comments
Leave a comment