The given equation is-
"x(y^2-a^2 )dx+y(x^2-t^2 )dy-z(y^2-\u03b1^2 )dz=0,"
Given equation is of the form-
"Pp+Qq+Rr=0"
The "\\dfrac{dx}{P}=\\dfrac{dy}{Q}=\\dfrac{dz}{R}"
So,"\\dfrac{dx}{x(y^2-a^2)}=\\dfrac{dy}{y(x^2-t^2)}=\\dfrac{dz}{z(y^2-\\alpha^2)}"
Taking first two terms-
"\\dfrac{dx}{x(y^2-a^2)}=\\dfrac{dy}{y(x^2-t^2)}"
"\\Rightarrow \\dfrac{(x^2-t^2)dx}{x}=\\dfrac{(y^2-a^2)dy}{y}"
Integrating both the sides-
"\\dfrac{x^2}{2}-t^2lnx=\\dfrac{y^2}{2}-a^2lny+c_1"
"\\Rightarrow \\dfrac{x^2}{2}-t^2lnx-\\dfrac{y^2}{2}+a^2lny=c_1~~~~~~~~~-(1)"
Taing last two terms-
"\\dfrac{dy}{y(x^2-t^2)}=\\dfrac{dz}{z(y^2-\\alpha^2)}"
"\\Rightarrow \\dfrac{(y^2-\\alpha^2)dy}{y}=\\dfrac{(z^2-t^2)dz}{z}"
Integrating Both the sides-
"\\dfrac{y^2}{2}-\\alpha^2lny=\\dfrac{z^2}{2}-t^2lnz+c_2"
"\\Rightarrow \\dfrac{y^2}{2}-\\alpha^2lny-\\dfrac{z^2}{2}+t^2lnz=c_2"
Hence The solution is-
"\\phi(c_1,c_2)=0"
"\\phi (\\dfrac{x^2}{2}-t^2lnx-\\dfrac{y^2}{2}+a^2lny, \\dfrac{y^2}{2}-\\alpha^2lny-\\dfrac{z^2}{2}+t^2lnz)=0"
Comments
Leave a comment