Answer to Question #188636 in Differential Equations for mahammad

Question #188636
erify that the following cquations are integrable and determine their solutions.
x(y^2-a^2 )dx+y(x^2-t^2 )dy-z(y^2-α^2 )dz=0, where α is constant
1
Expert's answer
2021-05-07T11:36:42-0400

The given equation is-

"x(y^2-a^2 )dx+y(x^2-t^2 )dy-z(y^2-\u03b1^2 )dz=0,"


Given equation is of the form-

"Pp+Qq+Rr=0"


The "\\dfrac{dx}{P}=\\dfrac{dy}{Q}=\\dfrac{dz}{R}"


So,"\\dfrac{dx}{x(y^2-a^2)}=\\dfrac{dy}{y(x^2-t^2)}=\\dfrac{dz}{z(y^2-\\alpha^2)}"



Taking first two terms-

 "\\dfrac{dx}{x(y^2-a^2)}=\\dfrac{dy}{y(x^2-t^2)}"



"\\Rightarrow \\dfrac{(x^2-t^2)dx}{x}=\\dfrac{(y^2-a^2)dy}{y}"


Integrating both the sides-


"\\dfrac{x^2}{2}-t^2lnx=\\dfrac{y^2}{2}-a^2lny+c_1"


"\\Rightarrow \\dfrac{x^2}{2}-t^2lnx-\\dfrac{y^2}{2}+a^2lny=c_1~~~~~~~~~-(1)"


Taing last two terms-


"\\dfrac{dy}{y(x^2-t^2)}=\\dfrac{dz}{z(y^2-\\alpha^2)}"



"\\Rightarrow \\dfrac{(y^2-\\alpha^2)dy}{y}=\\dfrac{(z^2-t^2)dz}{z}"


Integrating Both the sides-


"\\dfrac{y^2}{2}-\\alpha^2lny=\\dfrac{z^2}{2}-t^2lnz+c_2"


"\\Rightarrow \\dfrac{y^2}{2}-\\alpha^2lny-\\dfrac{z^2}{2}+t^2lnz=c_2"



Hence The solution is-


"\\phi(c_1,c_2)=0"


"\\phi (\\dfrac{x^2}{2}-t^2lnx-\\dfrac{y^2}{2}+a^2lny, \\dfrac{y^2}{2}-\\alpha^2lny-\\dfrac{z^2}{2}+t^2lnz)=0"




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS