Question #188113


y2 dx — x(2x + 3y)dy = 0


1
Expert's answer
2021-05-07T10:17:49-0400

We have given the differential equation,

y2dxx(2x+3y)dy=0y^2dx-x(2x+3y)dy = 0


y2dx=x(2x+3y)dyy^2dx = x(2x+3y)dy


dydx=y2x(2x+3y)\dfrac{dy}{dx} = \dfrac{y^2}{x(2x+3y)}


Putting y=vxy = vx


Hence, dydx=v+xdvdx\dfrac{dy}{dx} = v+ x \dfrac{dv}{dx}


Therefore,


v+xdvdx=v2x2x(2x+3vx)v+ x \dfrac{dv}{dx} = \dfrac{v^2x^2}{x(2x+3vx)}


xdvdx=2v22v3v+2x \dfrac{dv}{dx} = \dfrac{-2v^2-2v}{3v+2}


xdvdx=v(2v+2)3v+2x \dfrac{dv}{dx} = \dfrac{-v(2v+2)}{3v+2}


(3v+2)dv2v(v+1)=dxx-\int \dfrac{(3v+2)dv}{2v(v+1)} = \int \dfrac{dx}{x}


ln(v+1)2lnv=lnx+lnC-\dfrac{ln(v+1)}{2} - lnv = lnx + lnC


Replacing v=yxv = \dfrac{y}{x}

We get,


ln(yx+1)2lnyx=lnx+lnC-\dfrac{ln(\dfrac{y}{x}+1)}{2} - ln\dfrac{y}{x} = lnx + lnC


This is the required solution of given differential equation.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS