We have given the differential equation,
y2dx−x(2x+3y)dy=0
y2dx=x(2x+3y)dy
dxdy=x(2x+3y)y2
Putting y=vx
Hence, dxdy=v+xdxdv
Therefore,
v+xdxdv=x(2x+3vx)v2x2
xdxdv=3v+2−2v2−2v
xdxdv=3v+2−v(2v+2)
−∫2v(v+1)(3v+2)dv=∫xdx
−2ln(v+1)−lnv=lnx+lnC
Replacing v=xy
We get,
−2ln(xy+1)−lnxy=lnx+lnC
This is the required solution of given differential equation.
Comments