Find dy/dx and simply the result, if possible.(with solution)
A. y=√x -(1/√x)
B. y=x^2+π^2+x^π
C. y=(sin x-1)/(cos x)
D. y=x^2 sec x
E. y=(1)/(e^× +2)
A)
"Y=\\sqrt{x}+\\dfrac{1}{\\sqrt{x}}"
"\\dfrac{dy}{dx}=\\dfrac{1}{2\\sqrt x}+\\dfrac{1}{2\\sqrt[3]{x}}"
B)
"Y=\\ x^{2}+\\pi^{2}+x^{\\pi}"
"\\dfrac{dy}{dx}=2x+\\pi{x}^{\\pi-1}"
C)
"Y=\\dfrac{sinx}{cosx-1}"
"\\dfrac{dy}{dx}=\\dfrac{cosx\\times cosx-(sinx-1)(-sinx)}{(cosx-1)^2}"
"\\dfrac{dy}{dx}=\\dfrac{cos^{2}x+sin^{2}x-sinx}{{{(cosx-1}})^{2}}"
"\\dfrac{dy}{dx}=\\dfrac{1-sinx}{(cosx-1)^{2}}"
D)
"Y=x^{2}secx"
"\\dfrac{dy}{dx}=2\\times x\\times secx+secx\\times tanx \\times x^{2}"
=xsecx(xtanx+2)
E)
"Y=\\dfrac{1}{e^{x}+2}"
"\\dfrac{dy}{dx}=\\dfrac{e^{x}+2\\times0+1\\times e^{x}}{(e^x+2)^2}=\\dfrac{e^{x}}{(e^x+2)^2}"
Comments
Leave a comment