Given equation is of the form- Mdx+Ndy=0
where, M(x,y)=y2+xy3⇒My=2y+3xy2
N(x,y)=5y2−xy+y2siny⇒Nx=−y
So, MNx−My=y2+xy3−y−(2y+3xy2)=y2(1+y)−3y(1+xy)=y−3
Integrating Factor μ=e−∫y3dy=e−3lny=y−3
So Its, solution is-
(y1+x)dx+(y5−y2x+siny)dy=0
fx=y1+x,fy=y5−y2x+siny
and ,
F(x,y)=Fx+Fy=2x2+yx+5lny−cosy
So The complete solution is-
F(x,y)=c
⇒2x2+yx+5lny−cosy=c
Comments