(π π + πππ ) π π + (ππ π β ππ + π π π¬π’π§ π) π π = πΒ
Given equation is of the form- "Mdx+Ndy=0"
where, "M(x,y)=y^2+xy^3\\Rightarrow M_y=2y+3xy^2"
"N(x,y)=5y^2-xy+y^2siny\\Rightarrow N_x=-y"
So, "\\dfrac{N_x-M_y}{M}=\\dfrac{-y-(2y+3xy^2)}{y^2+xy^3}=\\dfrac{-3y(1+xy)}{y^2(1+y)}=\\dfrac{-3}{y}"
Integrating Factor "\\mu=e^{-\\int\\frac{3}{y}dy}=e^{-3lny}=y^{-3}"
So Its, solution is-
"(\\dfrac{1}{y}+x)dx+(\\dfrac{5}{y}-\\dfrac{x}{y^2}+siny)dy=0"
"f_x=\\dfrac{1}{y}+x, f_y=\\dfrac{5}{y}-\\dfrac{x}{y^2}+siny"
and ,
"F(x,y)=F_x+F_y=\\dfrac{x^2}{2}+\\dfrac{x}{y}+5lny-cosy"
So The complete solution is-
"F(x,y)=c"
"\\Rightarrow \\dfrac{x^2}{2}+\\dfrac{x}{y}+5lny-cosy=c"
Comments
Leave a comment