Given equation is of the form- Mdx+Ndy=0
where, M(x,y)=y2+xy3βMyβ=2y+3xy2
N(x,y)=5y2βxy+y2sinyβNxβ=βy
So, MNxββMyββ=y2+xy3βyβ(2y+3xy2)β=y2(1+y)β3y(1+xy)β=yβ3β
Integrating Factor ΞΌ=eββ«y3βdy=eβ3lny=yβ3
So Its, solution is-
(y1β+x)dx+(y5ββy2xβ+siny)dy=0
fxβ=y1β+x,fyβ=y5ββy2xβ+siny
and ,
F(x,y)=Fxβ+Fyβ=2x2β+yxβ+5lnyβcosy
So The complete solution is-
F(x,y)=c
β2x2β+yxβ+5lnyβcosy=c
Comments
Leave a comment