G i v e n d i f f e r e n t i a l e q u a t i o n i s x d y − y d x = x ( x 2 − y 2 ) . . . ( 1 ) D i v i d i n g t h e e q u a t i o n i n ( 1 ) w i t h x 2 − y 2 w e g e t x x 2 − y 2 d y d x − y x 2 − y 2 = x S u b s t i t u t i n g y = v x , a n d d y d x = v + x d v d x , w e g e t x x 2 − v 2 x 2 ( v + x d v d x ) − v x x 2 − v 2 x 2 = x ⇒ x x 2 ( 1 − v 2 ) ( v + x d v d x ) − v x x 2 ( 1 − v 2 ) = x ⇒ x x ( 1 − v 2 ) ( v + x d v d x ) − v x x ( 1 − v 2 ) = x ⇒ 1 ( 1 − v 2 ) ( v + x d v d x ) − v ( 1 − v 2 ) = x ( b y c a n c e l l a t i o n ) ⇒ v ( 1 − v 2 ) + ( d v d x ) x ( 1 − v 2 ) − v ( 1 − v 2 ) = x ⇒ ( d v d x ) x ( 1 − v 2 ) = x ( b y c a n c e l l a t i o n l a w ) ⇒ ( d v d x ) 1 ( 1 − v 2 ) = 1 ( b y c a n c e l l a t i o n l a w ) S e p a r a t i n g t h e v a r i a b l e s v a n d x w e g e t d v ( 1 − v 2 ) = 1 d x I n t e g r a t i n g o n b o t h s i d e s , w e g e t ∫ d v ( 1 − v 2 ) = ∫ 1 d x ⇒ s i n − 1 ( v ) = x + C , w h e r e C i s a c o n s t a n t o f i n t e g r a t i o n S u b s t i t u t i n g b a c k , v = y x , w e g e t s i n − 1 ( y x ) = x + C T a k i n g s i n o n b o t h s i d e s w e g e t s i n ( s i n − 1 ( y x ) ) = s i n ( x + C ) ∴ y x = s i n ( x + C ) Given\ differential\ equation \ is \ xdy-ydx=x(\sqrt{x^2-y^2})...(1)\\
Dividing \ the \ equation \ in \ (1) \ with \ \sqrt{x^2-y^2} \, we \ get \\
\frac{x}{\sqrt{x^2-y^2}}\frac{dy}{dx}-\frac{y}{\sqrt{x^2-y^2}}=x\\
Substituting \ y=vx, and \ \frac{dy}{dx}=v+x\frac{dv}{dx}, we \ get \\
\frac{x}{\sqrt{x^2-v^2x^2}}(v+x\frac{dv}{dx})-\frac{vx}{\sqrt{x^2-v^2x^2}}=x\\
\Rightarrow \frac{x}{\sqrt{x^2(1-v^2)}}(v+x\frac{dv}{dx})-\frac{vx}{\sqrt{x^2(1-v^2)}}=x\\
\Rightarrow \frac{x}{x\sqrt{(1-v^2)}}(v+x\frac{dv}{dx})-\frac{vx}{x\sqrt{(1-v^2)}}=x\\
\Rightarrow \frac{1}{\sqrt{(1-v^2)}}(v+x\frac{dv}{dx})-\frac{v}{\sqrt{(1-v^2)}}=x\\
(by \ cancellation)\\
\Rightarrow \frac{v}{\sqrt{(1-v^2)}}+(\frac{dv}{dx})\frac{x}{\sqrt{(1-v^2)}}-\frac{v}{\sqrt{(1-v^2)}}=x\\
\Rightarrow (\frac{dv}{dx})\frac{x}{\sqrt{(1-v^2)}}=x (by \ cancellation \ law)\\
\Rightarrow (\frac{dv}{dx})\frac{1}{\sqrt{(1-v^2)}}=1 (by \ cancellation \ law)\\
Separating \ the \ variables \ v \ and \ x\\
we \ get \ \frac{dv}{\sqrt{(1-v^2)}}=1 dx\\
Integrating \ on \ both \ sides, \ we \ get \\
\int\frac{dv}{\sqrt{(1-v^2)}}=\int 1 dx\\
\Rightarrow sin^{-1}(v)=x+C, where \ C \ is \ a \ constant \ of\ integration\\
Substituting \ back, \ v= \frac{y}{x}, we \ get \\
sin^{-1}(\frac{y}{x})=x+C\\
Taking \ sin \ on \ both \ sides \ we \ get \\
sin(sin^{-1}(\frac{y}{x}))=sin (x+C)\\
\therefore \frac{y}{x}=sin (x+C) G i v e n d i ff ere n t ia l e q u a t i o n i s x d y − y d x = x ( x 2 − y 2 ) ... ( 1 ) D i v i d in g t h e e q u a t i o n in ( 1 ) w i t h x 2 − y 2 w e g e t x 2 − y 2 x d x d y − x 2 − y 2 y = x S u b s t i t u t in g y = vx , an d d x d y = v + x d x d v , w e g e t x 2 − v 2 x 2 x ( v + x d x d v ) − x 2 − v 2 x 2 vx = x ⇒ x 2 ( 1 − v 2 ) x ( v + x d x d v ) − x 2 ( 1 − v 2 ) vx = x ⇒ x ( 1 − v 2 ) x ( v + x d x d v ) − x ( 1 − v 2 ) vx = x ⇒ ( 1 − v 2 ) 1 ( v + x d x d v ) − ( 1 − v 2 ) v = x ( b y c an ce ll a t i o n ) ⇒ ( 1 − v 2 ) v + ( d x d v ) ( 1 − v 2 ) x − ( 1 − v 2 ) v = x ⇒ ( d x d v ) ( 1 − v 2 ) x = x ( b y c an ce ll a t i o n l a w ) ⇒ ( d x d v ) ( 1 − v 2 ) 1 = 1 ( b y c an ce ll a t i o n l a w ) S e p a r a t in g t h e v a r iab l es v an d x w e g e t ( 1 − v 2 ) d v = 1 d x I n t e g r a t in g o n b o t h s i d es , w e g e t ∫ ( 1 − v 2 ) d v = ∫ 1 d x ⇒ s i n − 1 ( v ) = x + C , w h ere C i s a co n s t an t o f in t e g r a t i o n S u b s t i t u t in g ba c k , v = x y , w e g e t s i n − 1 ( x y ) = x + C T akin g s in o n b o t h s i d es w e g e t s in ( s i n − 1 ( x y )) = s in ( x + C ) ∴ x y = s in ( x + C )
Comments