Question #186628

xdy-ydx=x(x^2-y^2)^1/2


1
Expert's answer
2021-05-07T09:43:07-0400

Given differential equation is xdyydx=x(x2y2)...(1)Dividing the equation in (1) with x2y2we getxx2y2dydxyx2y2=xSubstituting y=vx,and dydx=v+xdvdx,we getxx2v2x2(v+xdvdx)vxx2v2x2=xxx2(1v2)(v+xdvdx)vxx2(1v2)=xxx(1v2)(v+xdvdx)vxx(1v2)=x1(1v2)(v+xdvdx)v(1v2)=x(by cancellation)v(1v2)+(dvdx)x(1v2)v(1v2)=x(dvdx)x(1v2)=x(by cancellation law)(dvdx)1(1v2)=1(by cancellation law)Separating the variables v and xwe get dv(1v2)=1dxIntegrating on both sides, we getdv(1v2)=1dxsin1(v)=x+C,where C is a constant of integrationSubstituting back, v=yx,we getsin1(yx)=x+CTaking sin on both sides we getsin(sin1(yx))=sin(x+C)yx=sin(x+C)Given\ differential\ equation \ is \ xdy-ydx=x(\sqrt{x^2-y^2})...(1)\\ Dividing \ the \ equation \ in \ (1) \ with \ \sqrt{x^2-y^2} \, we \ get \\ \frac{x}{\sqrt{x^2-y^2}}\frac{dy}{dx}-\frac{y}{\sqrt{x^2-y^2}}=x\\ Substituting \ y=vx, and \ \frac{dy}{dx}=v+x\frac{dv}{dx}, we \ get \\ \frac{x}{\sqrt{x^2-v^2x^2}}(v+x\frac{dv}{dx})-\frac{vx}{\sqrt{x^2-v^2x^2}}=x\\ \Rightarrow \frac{x}{\sqrt{x^2(1-v^2)}}(v+x\frac{dv}{dx})-\frac{vx}{\sqrt{x^2(1-v^2)}}=x\\ \Rightarrow \frac{x}{x\sqrt{(1-v^2)}}(v+x\frac{dv}{dx})-\frac{vx}{x\sqrt{(1-v^2)}}=x\\ \Rightarrow \frac{1}{\sqrt{(1-v^2)}}(v+x\frac{dv}{dx})-\frac{v}{\sqrt{(1-v^2)}}=x\\ (by \ cancellation)\\ \Rightarrow \frac{v}{\sqrt{(1-v^2)}}+(\frac{dv}{dx})\frac{x}{\sqrt{(1-v^2)}}-\frac{v}{\sqrt{(1-v^2)}}=x\\ \Rightarrow (\frac{dv}{dx})\frac{x}{\sqrt{(1-v^2)}}=x (by \ cancellation \ law)\\ \Rightarrow (\frac{dv}{dx})\frac{1}{\sqrt{(1-v^2)}}=1 (by \ cancellation \ law)\\ Separating \ the \ variables \ v \ and \ x\\ we \ get \ \frac{dv}{\sqrt{(1-v^2)}}=1 dx\\ Integrating \ on \ both \ sides, \ we \ get \\ \int\frac{dv}{\sqrt{(1-v^2)}}=\int 1 dx\\ \Rightarrow sin^{-1}(v)=x+C, where \ C \ is \ a \ constant \ of\ integration\\ Substituting \ back, \ v= \frac{y}{x}, we \ get \\ sin^{-1}(\frac{y}{x})=x+C\\ Taking \ sin \ on \ both \ sides \ we \ get \\ sin(sin^{-1}(\frac{y}{x}))=sin (x+C)\\ \therefore \frac{y}{x}=sin (x+C)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS