Given differential equation is xdy−ydx=x(x2−y2)...(1)Dividing the equation in (1) with x2−y2we getx2−y2xdxdy−x2−y2y=xSubstituting y=vx,and dxdy=v+xdxdv,we getx2−v2x2x(v+xdxdv)−x2−v2x2vx=x⇒x2(1−v2)x(v+xdxdv)−x2(1−v2)vx=x⇒x(1−v2)x(v+xdxdv)−x(1−v2)vx=x⇒(1−v2)1(v+xdxdv)−(1−v2)v=x(by cancellation)⇒(1−v2)v+(dxdv)(1−v2)x−(1−v2)v=x⇒(dxdv)(1−v2)x=x(by cancellation law)⇒(dxdv)(1−v2)1=1(by cancellation law)Separating the variables v and xwe get (1−v2)dv=1dxIntegrating on both sides, we get∫(1−v2)dv=∫1dx⇒sin−1(v)=x+C,where C is a constant of integrationSubstituting back, v=xy,we getsin−1(xy)=x+CTaking sin on both sides we getsin(sin−1(xy))=sin(x+C)∴xy=sin(x+C)
Comments