xdy-ydx=x(x^2-y^2)^1/2
"Given\\ differential\\ equation \\ is \\ xdy-ydx=x(\\sqrt{x^2-y^2})...(1)\\\\\nDividing \\ the \\ equation \\ in \\ (1) \\ with \\ \\sqrt{x^2-y^2} \\, we \\ get \\\\\n\\frac{x}{\\sqrt{x^2-y^2}}\\frac{dy}{dx}-\\frac{y}{\\sqrt{x^2-y^2}}=x\\\\\nSubstituting \\ y=vx, and \\ \\frac{dy}{dx}=v+x\\frac{dv}{dx}, we \\ get \\\\\n\\frac{x}{\\sqrt{x^2-v^2x^2}}(v+x\\frac{dv}{dx})-\\frac{vx}{\\sqrt{x^2-v^2x^2}}=x\\\\\n\\Rightarrow \\frac{x}{\\sqrt{x^2(1-v^2)}}(v+x\\frac{dv}{dx})-\\frac{vx}{\\sqrt{x^2(1-v^2)}}=x\\\\\n\\Rightarrow \\frac{x}{x\\sqrt{(1-v^2)}}(v+x\\frac{dv}{dx})-\\frac{vx}{x\\sqrt{(1-v^2)}}=x\\\\\n\\Rightarrow \\frac{1}{\\sqrt{(1-v^2)}}(v+x\\frac{dv}{dx})-\\frac{v}{\\sqrt{(1-v^2)}}=x\\\\\n(by \\ cancellation)\\\\\n\\Rightarrow \\frac{v}{\\sqrt{(1-v^2)}}+(\\frac{dv}{dx})\\frac{x}{\\sqrt{(1-v^2)}}-\\frac{v}{\\sqrt{(1-v^2)}}=x\\\\\n\\Rightarrow (\\frac{dv}{dx})\\frac{x}{\\sqrt{(1-v^2)}}=x (by \\ cancellation \\ law)\\\\\n\\Rightarrow (\\frac{dv}{dx})\\frac{1}{\\sqrt{(1-v^2)}}=1 (by \\ cancellation \\ law)\\\\\nSeparating \\ the \\ variables \\ v \\ and \\ x\\\\\nwe \\ get \\ \\frac{dv}{\\sqrt{(1-v^2)}}=1 dx\\\\\nIntegrating \\ on \\ both \\ sides, \\ we \\ get \\\\\n\\int\\frac{dv}{\\sqrt{(1-v^2)}}=\\int 1 dx\\\\\n\\Rightarrow sin^{-1}(v)=x+C, where \\ C \\ is \\ a \\ constant \\ of\\ integration\\\\\nSubstituting \\ back, \\ v= \\frac{y}{x}, we \\ get \\\\\nsin^{-1}(\\frac{y}{x})=x+C\\\\\nTaking \\ sin \\ on \\ both \\ sides \\ we \\ get \\\\\nsin(sin^{-1}(\\frac{y}{x}))=sin (x+C)\\\\\n\\therefore \\frac{y}{x}=sin (x+C)"
Comments
Leave a comment