Answer to Question #185656 in Differential Equations for Haris khan

Question #185656

Find the particular solution of nonlinear differential equation 

𝑑𝑦

𝑑π‘₯

=

𝑦

2βˆ’1

π‘₯

, 𝑦(1) = 2.



1
Expert's answer
2021-05-07T13:09:28-0400

yβ€²=y2βˆ’1xdyy2βˆ’1=dxx∫dyy2βˆ’1=∫dxxln⁑(yβˆ’1y+1)=2ln⁑x+Cyβˆ’1y+1=Ax2yβˆ’1=Ax2(y+1)y(1βˆ’Ax2)=Ax2+1y=Ax2+11βˆ’Ax2y(1)=1+A1βˆ’A=21+A=2βˆ’2A3A=1,A=13∴y=x2+33βˆ’x2\displaystyle y' = \frac{y^2 - 1}{x}\\ \frac{\mathrm{d}y}{y^2 - 1} = \frac{\mathrm{d}x}{x}\\ \int\frac{\mathrm{d}y}{y^2 - 1} = \int\frac{\mathrm{d}x}{x}\\ \ln\left(\frac{y - 1}{y + 1}\right) = 2\ln{x} + C\\ \frac{y - 1}{y + 1} = Ax^2\\ y - 1 = Ax^2(y + 1)\\ y(1 - Ax^2) = Ax^2 + 1\\ y = \frac{Ax^2 + 1}{1 - Ax^2}\\ y(1) = \frac{1 + A}{1 - A} = 2\\ 1 + A = 2 - 2A\\ 3A = 1, A = \frac{1}{3}\\ \therefore y = \frac{x^2 + 3}{3 - x^2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment