Find the particular solution of nonlinear differential equation
ππ¦
ππ₯
=
π¦
2β1
π₯
, π¦(1) = 2.
yβ²=y2β1xdyy2β1=dxxβ«dyy2β1=β«dxxlnβ‘(yβ1y+1)=2lnβ‘x+Cyβ1y+1=Ax2yβ1=Ax2(y+1)y(1βAx2)=Ax2+1y=Ax2+11βAx2y(1)=1+A1βA=21+A=2β2A3A=1,A=13β΄y=x2+33βx2\displaystyle y' = \frac{y^2 - 1}{x}\\ \frac{\mathrm{d}y}{y^2 - 1} = \frac{\mathrm{d}x}{x}\\ \int\frac{\mathrm{d}y}{y^2 - 1} = \int\frac{\mathrm{d}x}{x}\\ \ln\left(\frac{y - 1}{y + 1}\right) = 2\ln{x} + C\\ \frac{y - 1}{y + 1} = Ax^2\\ y - 1 = Ax^2(y + 1)\\ y(1 - Ax^2) = Ax^2 + 1\\ y = \frac{Ax^2 + 1}{1 - Ax^2}\\ y(1) = \frac{1 + A}{1 - A} = 2\\ 1 + A = 2 - 2A\\ 3A = 1, A = \frac{1}{3}\\ \therefore y = \frac{x^2 + 3}{3 - x^2}yβ²=xy2β1βy2β1dyβ=xdxββ«y2β1dyβ=β«xdxβln(y+1yβ1β)=2lnx+Cy+1yβ1β=Ax2yβ1=Ax2(y+1)y(1βAx2)=Ax2+1y=1βAx2Ax2+1βy(1)=1βA1+Aβ=21+A=2β2A3A=1,A=31ββ΄y=3βx2x2+3β
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment