p(p+y)=x(x+y)
We have given the differential equation,
p(p+y)=x(x+y)p(p+y) = x(x+y)p(p+y)=x(x+y)
p2+py−x(x+y)=0p^2 + py - x(x+y) = 0p2+py−x(x+y)=0
p=−y±y2+4x(x+y)2p =\dfrac{-y \pm \sqrt{y^2+4x(x+y)}}{2}p=2−y±y2+4x(x+y)
p=−y±(2x+y)2p = \dfrac{-y \pm (2x+y)}{2}p=2−y±(2x+y)
Taking the positive sign,
p=−y+2x+y2p = \dfrac{-y+2x+y}{2}p=2−y+2x+y
p=xp = xp=x
dydx=x\dfrac{dy}{dx} = xdxdy=x
dy=xdxdy = xdxdy=xdx
y=x22+Cy = \dfrac{x^2}{2}+Cy=2x2+C ---------- (First solution)
Now, Taking the negative sign.
p=−y−2x−y2p = \dfrac{-y-2x-y}{2}p=2−y−2x−y
p=−(x+y)p = -(x+y)p=−(x+y)
dydx=−x−y\dfrac{dy}{dx} = -x-ydxdy=−x−y
dydx+y=−x\dfrac{dy}{dx}+y = -xdxdy+y=−x
This is a linear first order differential equation.
I.F=exI.F = e^xI.F=ex
Its solution can be given as,
yex=∫−xex+Cye^x = \int -xe^x +Cyex=∫−xex+C
yex=−(x−1)ex+Cye^x = -(x-1)e^x + Cyex=−(x−1)ex+C
y=−(x−1)+Ce−xy = -(x-1) + Ce^{-x}y=−(x−1)+Ce−x ------- (Second solution)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments