We have given the differential equation,
p ( p + y ) = x ( x + y ) p(p+y) = x(x+y) p ( p + y ) = x ( x + y )
p 2 + p y − x ( x + y ) = 0 p^2 + py - x(x+y) = 0 p 2 + p y − x ( x + y ) = 0
p = − y ± y 2 + 4 x ( x + y ) 2 p =\dfrac{-y \pm \sqrt{y^2+4x(x+y)}}{2} p = 2 − y ± y 2 + 4 x ( x + y )
p = − y ± ( 2 x + y ) 2 p = \dfrac{-y \pm (2x+y)}{2} p = 2 − y ± ( 2 x + y )
Taking the positive sign,
p = − y + 2 x + y 2 p = \dfrac{-y+2x+y}{2} p = 2 − y + 2 x + y
p = x p = x p = x
d y d x = x \dfrac{dy}{dx} = x d x d y = x
d y = x d x dy = xdx d y = x d x
y = x 2 2 + C y = \dfrac{x^2}{2}+C y = 2 x 2 + C ---------- (First solution)
Now, Taking the negative sign.
p = − y − 2 x − y 2 p = \dfrac{-y-2x-y}{2} p = 2 − y − 2 x − y
p = − ( x + y ) p = -(x+y) p = − ( x + y )
d y d x = − x − y \dfrac{dy}{dx} = -x-y d x d y = − x − y
d y d x + y = − x \dfrac{dy}{dx}+y = -x d x d y + y = − x
This is a linear first order differential equation.
I . F = e x I.F = e^x I . F = e x
Its solution can be given as,
y e x = ∫ − x e x + C ye^x = \int -xe^x +C y e x = ∫ − x e x + C
y e x = − ( x − 1 ) e x + C ye^x = -(x-1)e^x + C y e x = − ( x − 1 ) e x + C
y = − ( x − 1 ) + C e − x y = -(x-1) + Ce^{-x} y = − ( x − 1 ) + C e − x ------- (Second solution)
Comments