Question #186585

: Solve a Homogeneous DEq. ydx = 2(x + y) dy


1
Expert's answer
2021-05-07T09:40:51-0400

Given: ydx=2(x+y)dyydx=2(x+y)dy

Now ydx=2(x+y)dydxdy=2(x+y)yydx=2(x+y)dy\Rightarrow \frac{dx}{dy}=\frac{2(x+y)}{y}

Observe that the given differential equation is a first-order homogeneous differential equation.

Solve the equation by using the substitution x=vyx=vy

x=vydxdy=v(1)+y(dvdy)=v+ydvdyx=vy\Rightarrow \frac{dx}{dy}=v(1)+y(\frac{dv}{dy})=v+y\frac{dv}{dy}

Then the given differential equation becomes

dxdy=2(x+y)yv+ydvdy=2(vy+y)y=2y(v+1)y=2(v+1)\frac{dx}{dy}=\frac{2(x+y)}{y}\Rightarrow v+y\frac{dv}{dy}=\frac{2(vy+y)}{y}=\frac{2y(v+1)}{y}=2(v+1)

ydvdy=2v+2v=v+2\Rightarrow y\frac{dv}{dy}=2v+2-v=v+2

Using the separation of variables, we get

dvv+2=dyy\frac{dv}{v+2}=\frac{dy}{y}

Integrating on both sides, we get

dvv+2=dyyln(v+2)=ln(y)+ln(c)ln(v+2)=ln(cy)\int \frac{dv}{v+2}=\int \frac{dy}{y}\Rightarrow ln(v+2)=ln(y)+ln(c)\Rightarrow ln(v+2)=ln(cy)

v+2=cy\Rightarrow v+2=cy

Substituting v=xyv=\frac{x}{y} , we get

xy+2=cyx+2yy=cyx+2y=cy2\frac{x}{y}+2=cy\Rightarrow \frac{x+2y}{y}=cy\Rightarrow x+2y=cy^2

Therefore, general solution to the given differential equation is

x+2y=cy2x+2y=cy^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS