: Solve a Homogeneous DEq. ydx = 2(x + y) dy
Given: "ydx=2(x+y)dy"
Now "ydx=2(x+y)dy\\Rightarrow \\frac{dx}{dy}=\\frac{2(x+y)}{y}"
Observe that the given differential equation is a first-order homogeneous differential equation.
Solve the equation by using the substitution "x=vy"
"x=vy\\Rightarrow \\frac{dx}{dy}=v(1)+y(\\frac{dv}{dy})=v+y\\frac{dv}{dy}"
Then the given differential equation becomes
"\\frac{dx}{dy}=\\frac{2(x+y)}{y}\\Rightarrow v+y\\frac{dv}{dy}=\\frac{2(vy+y)}{y}=\\frac{2y(v+1)}{y}=2(v+1)"
"\\Rightarrow y\\frac{dv}{dy}=2v+2-v=v+2"
Using the separation of variables, we get
"\\frac{dv}{v+2}=\\frac{dy}{y}"
Integrating on both sides, we get
"\\int \\frac{dv}{v+2}=\\int \\frac{dy}{y}\\Rightarrow ln(v+2)=ln(y)+ln(c)\\Rightarrow ln(v+2)=ln(cy)"
"\\Rightarrow v+2=cy"
Substituting "v=\\frac{x}{y}" , we get
"\\frac{x}{y}+2=cy\\Rightarrow \\frac{x+2y}{y}=cy\\Rightarrow x+2y=cy^2"
Therefore, general solution to the given differential equation is
"x+2y=cy^2"
Comments
Leave a comment