: Solve Ricatti’s DEq. dy/dx =-2-y-y2 , y1=2
Given Differential equation: "\\frac{dy}{dx}" = 2 - y - y2 , y(1) = 2
since it is a separable differential equation, therefore, separating it we get,
"\\implies" "\\frac{dy}{2 - y - y^2}" = "dx"
taking integral both side,
"\\implies" "\\int" "\\frac{dy}{2 - y - y^2}" = "\\int" "dx"
"\\implies" "\\int" "\\frac{dy}{2 - y - y^2}" = "\\int" "dx"
by using partial fraction decomposition we can write,
"\\frac{dy}{2 - y - y^2}" = "dy" ( "\\frac{-1}{3(y-1)}" + "\\frac{1}{3(y+2)}" ) = "\\frac{-1}{3(y-1)}dy" + "\\frac{1}{3(y+2)}dy"
therefore,
"\\implies" "\\int"( "\\frac{-1}{3(y-1)}dy" + "\\frac{1}{3(y+2)}dy" ) = "\\int" "dx"
"\\implies" "\\int" "\\frac{-1}{3(y-1)}dy" + "\\int" "\\frac{1}{3(y+2)}dy" = "\\int" "dx"
"\\implies" "-\\frac{1}{3}\\ln \\left(y-1\\right)+\\frac{1}{3}\\ln \\left(y+2\\right)=t+C"
since given y(1) = 2
"-\\frac{1}{3}\\ln \\left(2-1\\right)+\\frac{1}{3}\\ln \\left(2+2\\right)=1+C"
"\\implies" C = "\\frac{2\\ln \\left(2\\right)}{3}-1"
hence solution of given Ricatti’s DEq is given by,
"\\implies" "-\\frac{1}{3}\\ln \\left(y-1\\right)+\\frac{1}{3}\\ln \\left(y+2\\right)=t+\\frac{2\\ln \\left(2\\right)}{3}-1"
Comments
Leave a comment