Answer to Question #186587 in Differential Equations for hammad sarwar

Question #186587

: Solve Ricatti’s DEq. dy/dx =-2-y-y2 , y1=2


1
Expert's answer
2021-05-07T09:46:08-0400

Given Differential equation: dydx\frac{dy}{dx} = 2 - y - y2 , y(1) = 2


since it is a separable differential equation, therefore, separating it we get,

    \implies dy2yy2\frac{dy}{2 - y - y^2} = dxdx

taking integral both side,

    \implies \int dy2yy2\frac{dy}{2 - y - y^2} = \int dxdx


    \implies \int dy2yy2\frac{dy}{2 - y - y^2} = \int dxdx


by using partial fraction decomposition we can write,


dy2yy2\frac{dy}{2 - y - y^2} = dydy ( 13(y1)\frac{-1}{3(y-1)} + 13(y+2)\frac{1}{3(y+2)} ) = 13(y1)dy\frac{-1}{3(y-1)}dy + 13(y+2)dy\frac{1}{3(y+2)}dy


therefore,


    \implies \int( 13(y1)dy\frac{-1}{3(y-1)}dy + 13(y+2)dy\frac{1}{3(y+2)}dy ) = \int dxdx


    \implies \int 13(y1)dy\frac{-1}{3(y-1)}dy + \int 13(y+2)dy\frac{1}{3(y+2)}dy = \int dxdx


    \implies 13ln(y1)+13ln(y+2)=t+C-\frac{1}{3}\ln \left(y-1\right)+\frac{1}{3}\ln \left(y+2\right)=t+C


since given y(1) = 2


13ln(21)+13ln(2+2)=1+C-\frac{1}{3}\ln \left(2-1\right)+\frac{1}{3}\ln \left(2+2\right)=1+C


    \implies C = 2ln(2)31\frac{2\ln \left(2\right)}{3}-1

hence solution of given Ricatti’s DEq is given by,


    \implies 13ln(y1)+13ln(y+2)=t+2ln(2)31-\frac{1}{3}\ln \left(y-1\right)+\frac{1}{3}\ln \left(y+2\right)=t+\frac{2\ln \left(2\right)}{3}-1






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment