given that y1(x)=x1 is 1 solution of differential equation 2 x2 y,, + 3 x y, - y =0 and x>0. find a second end independent solution of the equation
Look for a solution in the form
"y=y_1z=\\frac{z}{x}",
then "y'=\\frac{z'}{x}-\\frac{z}{x^2}"
and "y''=z''\\left(\\frac{1}{x}\\right)+2z'\\left(\\frac{1}{x}\\right)'+z\\left(\\frac{1}{x}\\right)''=\\frac{z''}{x}-\\frac{2z'}{x^2}+\\frac{2z}{x^3}"
Then
"0=2x^2\\left(\\frac{z''}{x}-\\frac{2z'}{x^2}+\\frac{2z}{x^3}\\right)+3x\\left(\\frac{z'}{x}-\\frac{z}{x^2}\\right)-\\frac{z}{x}=2z''x-z'"
Let "z'=u", then "2u'x-u=0" or "\\frac{2u'ux-u^2x'}{x^2}=0".
Since "2u'u=(u^2)'", we have "0=\\frac{2u'ux-u^2x'}{x^2}=\\frac{(u^2)'x-u^2x'}{x^2}=\\left(\\frac{u^2}{x}\\right)'", so "\\frac{u^2}{x}=C"
Then "u=\\sqrt{Cx}=\\sqrt{|C|}\\sqrt{x}" if "C\\ge 0",
or "u=\\sqrt{Cx}=\\sqrt{|C|}\\sqrt{-x}" if "C\\le 0".
Denote "\\sqrt{|C|}" by "D", then "u=D\\sqrt{x}" or "u=D\\sqrt{-x}"
Replace "u" by "z'": "z'=D\\sqrt{x}" or "z'=D\\sqrt{-x}".
Then
"z=\\frac{2}{3}D\\sqrt{x^3}+A" or "z=-\\frac{2}{3}D\\sqrt{-x^3}+A". In every case "z=B\\sqrt{|x|^3}+A".
Since "y=\\frac{z}{x}", we have "y=Bs(x)\\sqrt{|x|}+\\frac{A}{x}=E\\sqrt{|x|}+\\frac{A}{x}",
where "s(x)=\\begin{cases}\n1,&\\text{if $x>0$}\\\\\n0,&\\text{if $x=0$}\\\\\n-1,&\\text{if $x<0$}\n\\end{cases}"
So "\\sqrt{|x|}" is the second solution.
Answer: "\\sqrt{|x|}"
Comments
Leave a comment