Look for a solution in the form
y=y1z=xz,
then y′=xz′−x2z
and y′′=z′′(x1)+2z′(x1)′+z(x1)′′=xz′′−x22z′+x32z
Then
0=2x2(xz′′−x22z′+x32z)+3x(xz′−x2z)−xz=2z′′x−z′
Let z′=u, then 2u′x−u=0 or x22u′ux−u2x′=0.
Since 2u′u=(u2)′, we have 0=x22u′ux−u2x′=x2(u2)′x−u2x′=(xu2)′, so xu2=C
Then u=Cx=∣C∣x if C≥0,
or u=Cx=∣C∣−x if C≤0.
Denote ∣C∣ by D, then u=Dx or u=D−x
Replace u by z′: z′=Dx or z′=D−x.
Then
z=32Dx3+A or z=−32D−x3+A. In every case z=B∣x∣3+A.
Since y=xz, we have y=Bs(x)∣x∣+xA=E∣x∣+xA,
where s(x)=⎩⎨⎧1,0,−1,if x>0if x=0if x<0
So ∣x∣ is the second solution.
Answer: ∣x∣
Comments