Look for a solution in the form
y = y 1 z = z x y=y_1z=\frac{z}{x} y = y 1 z = x z ,
then y ′ = z ′ x − z x 2 y'=\frac{z'}{x}-\frac{z}{x^2} y ′ = x z ′ − x 2 z
and y ′ ′ = z ′ ′ ( 1 x ) + 2 z ′ ( 1 x ) ′ + z ( 1 x ) ′ ′ = z ′ ′ x − 2 z ′ x 2 + 2 z x 3 y''=z''\left(\frac{1}{x}\right)+2z'\left(\frac{1}{x}\right)'+z\left(\frac{1}{x}\right)''=\frac{z''}{x}-\frac{2z'}{x^2}+\frac{2z}{x^3} y ′′ = z ′′ ( x 1 ) + 2 z ′ ( x 1 ) ′ + z ( x 1 ) ′′ = x z ′′ − x 2 2 z ′ + x 3 2 z
Then
0 = 2 x 2 ( z ′ ′ x − 2 z ′ x 2 + 2 z x 3 ) + 3 x ( z ′ x − z x 2 ) − z x = 2 z ′ ′ x − z ′ 0=2x^2\left(\frac{z''}{x}-\frac{2z'}{x^2}+\frac{2z}{x^3}\right)+3x\left(\frac{z'}{x}-\frac{z}{x^2}\right)-\frac{z}{x}=2z''x-z' 0 = 2 x 2 ( x z ′′ − x 2 2 z ′ + x 3 2 z ) + 3 x ( x z ′ − x 2 z ) − x z = 2 z ′′ x − z ′
Let z ′ = u z'=u z ′ = u , then 2 u ′ x − u = 0 2u'x-u=0 2 u ′ x − u = 0 or 2 u ′ u x − u 2 x ′ x 2 = 0 \frac{2u'ux-u^2x'}{x^2}=0 x 2 2 u ′ ux − u 2 x ′ = 0 .
Since 2 u ′ u = ( u 2 ) ′ 2u'u=(u^2)' 2 u ′ u = ( u 2 ) ′ , we have 0 = 2 u ′ u x − u 2 x ′ x 2 = ( u 2 ) ′ x − u 2 x ′ x 2 = ( u 2 x ) ′ 0=\frac{2u'ux-u^2x'}{x^2}=\frac{(u^2)'x-u^2x'}{x^2}=\left(\frac{u^2}{x}\right)' 0 = x 2 2 u ′ ux − u 2 x ′ = x 2 ( u 2 ) ′ x − u 2 x ′ = ( x u 2 ) ′ , so u 2 x = C \frac{u^2}{x}=C x u 2 = C
Then u = C x = ∣ C ∣ x u=\sqrt{Cx}=\sqrt{|C|}\sqrt{x} u = C x = ∣ C ∣ x if C ≥ 0 C\ge 0 C ≥ 0 ,
or u = C x = ∣ C ∣ − x u=\sqrt{Cx}=\sqrt{|C|}\sqrt{-x} u = C x = ∣ C ∣ − x if C ≤ 0 C\le 0 C ≤ 0 .
Denote ∣ C ∣ \sqrt{|C|} ∣ C ∣ by D D D , then u = D x u=D\sqrt{x} u = D x or u = D − x u=D\sqrt{-x} u = D − x
Replace u u u by z ′ z' z ′ : z ′ = D x z'=D\sqrt{x} z ′ = D x or z ′ = D − x z'=D\sqrt{-x} z ′ = D − x .
Then
z = 2 3 D x 3 + A z=\frac{2}{3}D\sqrt{x^3}+A z = 3 2 D x 3 + A or z = − 2 3 D − x 3 + A z=-\frac{2}{3}D\sqrt{-x^3}+A z = − 3 2 D − x 3 + A . In every case z = B ∣ x ∣ 3 + A z=B\sqrt{|x|^3}+A z = B ∣ x ∣ 3 + A .
Since y = z x y=\frac{z}{x} y = x z , we have y = B s ( x ) ∣ x ∣ + A x = E ∣ x ∣ + A x y=Bs(x)\sqrt{|x|}+\frac{A}{x}=E\sqrt{|x|}+\frac{A}{x} y = B s ( x ) ∣ x ∣ + x A = E ∣ x ∣ + x A ,
where s ( x ) = { 1 , if x > 0 0 , if x = 0 − 1 , if x < 0 s(x)=\begin{cases}
1,&\text{if $x>0$}\\
0,&\text{if $x=0$}\\
-1,&\text{if $x<0$}
\end{cases} s ( x ) = ⎩ ⎨ ⎧ 1 , 0 , − 1 , if x > 0 if x = 0 if x < 0
So ∣ x ∣ \sqrt{|x|} ∣ x ∣ is the second solution.
Answer: ∣ x ∣ \sqrt{|x|} ∣ x ∣
Comments