y^{'}+6y=4e^{-5x}
y^{'}+6y=4e^{-5x}
The problem is rewritten as
"\\frac{dy}{dx} + 6y = 4e^{-5x}"
This is a first order linear differential equation
Integrating factor = "e^{\\smallint6dx} = e^{6x}"
Multiplying both sides by the integrating factor we get
"e^{6x}[\\frac{dy}{dx} + 6y] = 4e^{-5x}e^{6x}"
=> "e^{6x}\\frac{dy}{dx} + 6e^{6x}y = 4e^{x}"
=> "e^{6x}\\frac{dy}{dx} + \\frac{de^{6x}}{dx}y = 4e^{x}"
=> "\\frac{d(ye^{6x})}{dx} = 4e^{x}"
=> "d(ye^{6x})= 4e^{x}dx"
Integrating both sides
"\\int{d(ye^{6x})}=\\int{ 4e^{x}dx}"
=> "ye^{6x} = 4e^{x}+C" where C is integration constant
Comments
Leave a comment