Question #186560

y^{'}+6y=4e^{-5x}


1
Expert's answer
2021-05-07T09:41:51-0400

y^{'}+6y=4e^{-5x}

The problem is rewritten as

dydx+6y=4e5x\frac{dy}{dx} + 6y = 4e^{-5x}

This is a first order linear differential equation

Integrating factor = e6dx=e6xe^{\smallint6dx} = e^{6x}

Multiplying both sides by the integrating factor we get

e6x[dydx+6y]=4e5xe6xe^{6x}[\frac{dy}{dx} + 6y] = 4e^{-5x}e^{6x}

=> e6xdydx+6e6xy=4exe^{6x}\frac{dy}{dx} + 6e^{6x}y = 4e^{x}

=> e6xdydx+de6xdxy=4exe^{6x}\frac{dy}{dx} + \frac{de^{6x}}{dx}y = 4e^{x}

=> d(ye6x)dx=4ex\frac{d(ye^{6x})}{dx} = 4e^{x}

=> d(ye6x)=4exdxd(ye^{6x})= 4e^{x}dx

Integrating both sides

d(ye6x)=4exdx\int{d(ye^{6x})}=\int{ 4e^{x}dx}

=> ye6x=4ex+Cye^{6x} = 4e^{x}+C where C is integration constant


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS