Question #186685

(Y2+z2-x2)p-2xyq+2xz=0


1
Expert's answer
2021-05-07T09:40:39-0400

Given equation is Lagrange's linear equation

Pp+Qq=R

where P=y2+z2-x2, Q=-2xy, R=-2xz.

The auxiliary equation is

dxP=yQ=dzR\frac{dx}{P}=\frac{y}{Q}=\frac{dz}{R}

dxy2+z2x2=y2xy=dz2xz\frac{dx}{y^2+z^2-x^2}=\frac{y}{-2xy}=\frac{dz}{-2xz}....................................................(1)

Taking last two ratios,

dy2xy=dz2xzdyy=dzzIntegrating both side,logy=logz+logc, where c is a constant.c=yz\frac{dy}{-2xy}=\frac{dz}{-2xz}\newline \frac{dy}{y}=\frac{dz}{z}\newline \text{Integrating both side,}\newline logy=logz+logc,\space \text {where c is a constant.}\newline c=\frac{y}{z}


Taking Lagrangian multipliers as, x,y,z, each ratios of (1),

xdx+ydy+zdzx(x2+y2+z2)\frac{xdx+ydy+zdz}{-x(x^2+y^2+z^2)}


Now take,

dy2xy=xdx+ydy+zdzx(x2+y2+z2)dyy=d(x2+y2+z2)(x2+y2+z2)Integrating both side,logy=log(x2+y2+z2)+logbyx2+y2+z2=bThe general equation isϕ(yz,yx2+y2+z2)=0\frac{dy}{-2xy}=\frac{xdx+ydy+zdz}{-x(x^2+y^2+z^2)}\newline \frac{dy}{y}=\frac{d(x^2+y^2+z^2)}{(x^2+y^2+z^2)}\newline \text{Integrating both side,}\newline logy=log(x^2+y^2+z^2)+logb\newline ∴\frac{y}{x^2+y^2+z^2}=b\newline ∴ \text{The general equation is}\newline ϕ(\frac{y}{z},\frac{y}{x^2+y^2+z^2})=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS