(Y2+z2-x2)p-2xyq+2xz=0
Given equation is Lagrange's linear equation
Pp+Qq=R
where P=y2+z2-x2, Q=-2xy, R=-2xz.
The auxiliary equation is
"\\frac{dx}{P}=\\frac{y}{Q}=\\frac{dz}{R}"
"\\frac{dx}{y^2+z^2-x^2}=\\frac{y}{-2xy}=\\frac{dz}{-2xz}"....................................................(1)
Taking last two ratios,
"\\frac{dy}{-2xy}=\\frac{dz}{-2xz}\\newline\n\\frac{dy}{y}=\\frac{dz}{z}\\newline\n\n\\text{Integrating both side,}\\newline\nlogy=logz+logc,\\space \\text {where c is a constant.}\\newline\nc=\\frac{y}{z}"
Taking Lagrangian multipliers as, x,y,z, each ratios of (1),
"\\frac{xdx+ydy+zdz}{-x(x^2+y^2+z^2)}"
Now take,
"\\frac{dy}{-2xy}=\\frac{xdx+ydy+zdz}{-x(x^2+y^2+z^2)}\\newline\n\n\\frac{dy}{y}=\\frac{d(x^2+y^2+z^2)}{(x^2+y^2+z^2)}\\newline\n\n\\text{Integrating both side,}\\newline\n\nlogy=log(x^2+y^2+z^2)+logb\\newline\n\n\u2234\\frac{y}{x^2+y^2+z^2}=b\\newline\n\n\u2234 \n\\text{The general equation is}\\newline\n\n\u03d5(\\frac{y}{z},\\frac{y}{x^2+y^2+z^2})=0"
Comments
Leave a comment