Given equation is Lagrange's linear equation
Pp+Qq=R
where P=y2+z2-x2, Q=-2xy, R=-2xz.
The auxiliary equation is
Pdx=Qy=Rdz
y2+z2−x2dx=−2xyy=−2xzdz....................................................(1)
Taking last two ratios,
−2xydy=−2xzdzydy=zdzIntegrating both side,logy=logz+logc, where c is a constant.c=zy
Taking Lagrangian multipliers as, x,y,z, each ratios of (1),
−x(x2+y2+z2)xdx+ydy+zdz
Now take,
−2xydy=−x(x2+y2+z2)xdx+ydy+zdzydy=(x2+y2+z2)d(x2+y2+z2)Integrating both side,logy=log(x2+y2+z2)+logb∴x2+y2+z2y=b∴The general equation isϕ(zy,x2+y2+z2y)=0
Comments