(D2+7DD'+12D'2)z=sinhx
"(D^2+7DD'+12D'^2)z=sinhx"
Auxilary equation is-
"m^2+7m+12=0\\\\\n\n \\Rightarrow(m+3)(m+4)=0\\\\\n\n \\Rightarrow m=-3,-4"
Complimentary function CF is-
"CF= f_1(y-3x)+f_2(y-4x)"
Then Paticular Integral-
"PI=\\dfrac{1}{D^2+7DD'+12D'^2}sinhx"
"=\\dfrac{1}{D^2+7DD'+12D'^2}(\\dfrac{e^x-e^{-x}}{2})"
"=\\dfrac{1}{2}(\\dfrac{e^x}{D^2+7DD'+12D'^2}-\\dfrac{e^{-x}}{D^2+7DD'+12D'^2})"
"=\\dfrac{1}{2}(\\dfrac{e^x}{(1^2+7(1)+12(0)}-\\dfrac{e^{-x}}{(-1)^2+7(1)+12(0)})"
"=\\dfrac{1}{2}(\\dfrac{e^x-e^{-x}}{8})"
"=\\dfrac{sinhx}{8}"
Solution is-
"z=f_1(y+3x)+f_2(y+6x)+\\dfrac{sinhx}{8}"
Comments
Leave a comment