(D2+7DD′+12D′2)z=sinhx
Auxilary equation is-
m2+7m+12=0⇒(m+3)(m+4)=0⇒m=−3,−4
Complimentary function CF is-
CF=f1(y−3x)+f2(y−4x)
Then Paticular Integral-
PI=D2+7DD′+12D′21sinhx
=D2+7DD′+12D′21(2ex−e−x)
=21(D2+7DD′+12D′2ex−D2+7DD′+12D′2e−x)
=21((12+7(1)+12(0)ex−(−1)2+7(1)+12(0)e−x)
=21(8ex−e−x)
=8sinhx
Solution is-
z=f1(y+3x)+f2(y+6x)+8sinhx
Comments