Question #188246

(D2+7DD'+12D'2)z=sinhx

1
Expert's answer
2021-05-07T10:31:26-0400

(D2+7DD+12D2)z=sinhx(D^2+7DD'+12D'^2)z=sinhx


Auxilary equation is-

  m2+7m+12=0(m+3)(m+4)=0m=3,4m^2+7m+12=0\\ \Rightarrow(m+3)(m+4)=0\\ \Rightarrow m=-3,-4


Complimentary function CF is-

       CF=f1(y3x)+f2(y4x)CF= f_1(y-3x)+f_2(y-4x)


Then Paticular Integral-


         PI=1D2+7DD+12D2sinhxPI=\dfrac{1}{D^2+7DD'+12D'^2}sinhx

     

           =1D2+7DD+12D2(exex2)=\dfrac{1}{D^2+7DD'+12D'^2}(\dfrac{e^x-e^{-x}}{2})


           =12(exD2+7DD+12D2exD2+7DD+12D2)=\dfrac{1}{2}(\dfrac{e^x}{D^2+7DD'+12D'^2}-\dfrac{e^{-x}}{D^2+7DD'+12D'^2})


          =12(ex(12+7(1)+12(0)ex(1)2+7(1)+12(0))=\dfrac{1}{2}(\dfrac{e^x}{(1^2+7(1)+12(0)}-\dfrac{e^{-x}}{(-1)^2+7(1)+12(0)})


         =12(exex8)=\dfrac{1}{2}(\dfrac{e^x-e^{-x}}{8})


         =sinhx8=\dfrac{sinhx}{8}


  Solution is-

 z=f1(y+3x)+f2(y+6x)+sinhx8z=f_1(y+3x)+f_2(y+6x)+\dfrac{sinhx}{8}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS