Question #188467

Given the function

𝑔(𝑥) = 𝑥 𝐽1 (𝑥) − 𝐴 𝐽0(𝑥) with 𝐴 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≥ 0,


determine 𝑔′, 𝑔 ′′ and 𝑔′′′ . Reduce all expressions to functions of 𝐽0(𝑥), 𝐽1(𝑥) and 𝐴 only.



1
Expert's answer
2021-05-11T09:18:57-0400

g(x)=xJ1(x)AJ0(x)g(x)=xJ_1(x)-AJ_0(x) ....1)


Now differentiating the above equation we get-


g(x)=J1(x)xJ1(x)AJ0(x)g^{'}(x)=J_1(x)-xJ_1^{'}(x)-AJ_0^{'}(x)



Now by the recurrence relation ,we know that


Jn(x)=Jn1(x)Jn+1(x)2J_n^{'}(x)=\dfrac{J_n-1(x)-J_n+1(x)}{2} ......2)


now putting n=1 and n=0 we get the values of J1(x) and J0(x).J_1^{'}(x)\ and \ J_0^{'}(x).


now putting the values we get g(x)=J1(x)xJ0(x)J2(x)2AJ1(x)J1(x)2^{'}(x)=J_1(x)-x \dfrac{J_0{(x)}-J_2(x)}{2}-A \dfrac{J_{-1}(x)-J_1(x)}{2} which is our required equation.



g(x)=J1(x)J1(x)xJ1(x)AJo(x)g^{''}(x)=J_1^{'}(x)-J_1^{'}(x)-xJ_1^{''}(x)-AJ_o^{''}(x)


Now differentiating recurrence relation .....2)


Jn"(x)=Jn1(x)Jn+1(x)2J_n^{"}(x)= \dfrac{J_n-1^{'}(x)-J_n+1{'}(x)}{2} .....3)

Now in recurrence relation .....2), if we replace n\to n-1,we get -Jn1(x)=Jn2(x)Jn(x)2J_{n-1}^{'}(x)=\dfrac{J_{n-2}(x)-J_n(x)}{2}

now replacing n\to n+1, we get- Jn+1(x)=Jn(x)Jn+22J_n+1{'}(x)=\dfrac{Jn(x)-J_{n+2}}{2}

now puttting both these equation in .....3), we get- Jn(x)=\ Jn{''}(x)= Jn2(x)2Jn(x)Jn+2(x)2\dfrac{J_{n-2}(x)-2J_n(x)-J_{n+2}(x)}{2}


now putting n=1,0 we get -


g(x)=xJ1(x)2J1(x)2g^{''}(x)=-x\dfrac {J_{-1}(x)-2J_1{(x)}}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS