Given the function
π(π₯) = π₯ π½1 (π₯) β π΄ π½0(π₯) with π΄ = ππππ π‘πππ‘ β₯ 0,
determine πβ², π β²β² and πβ²β²β² . Reduce all expressions to functions of π½0(π₯), π½1(π₯) and π΄ only.
"g(x)=xJ_1(x)-AJ_0(x)" ....1)
Now differentiating the above equation we get-
"g^{'}(x)=J_1(x)-xJ_1^{'}(x)-AJ_0^{'}(x)"
Now by the recurrence relation ,we know that
"J_n^{'}(x)=\\dfrac{J_n-1(x)-J_n+1(x)}{2}" ......2)
now putting n=1 and n=0 we get the values of "J_1^{'}(x)\\ and \\ J_0^{'}(x)."
now putting the values we get g"^{'}(x)=J_1(x)-x \\dfrac{J_0{(x)}-J_2(x)}{2}-A \\dfrac{J_{-1}(x)-J_1(x)}{2}" which is our required equation.
"g^{''}(x)=J_1^{'}(x)-J_1^{'}(x)-xJ_1^{''}(x)-AJ_o^{''}(x)"
Now differentiating recurrence relation .....2)
"J_n^{"}(x)= \\dfrac{J_n-1^{'}(x)-J_n+1{'}(x)}{2}" .....3)
Now in recurrence relation .....2), if we replace n"\\to" n-1,we get -"J_{n-1}^{'}(x)=\\dfrac{J_{n-2}(x)-J_n(x)}{2}"
now replacing n"\\to" n+1, we get- "J_n+1{'}(x)=\\dfrac{Jn(x)-J_{n+2}}{2}"
now puttting both these equation in .....3), we get-"\\ Jn{''}(x)=" "\\dfrac{J_{n-2}(x)-2J_n(x)-J_{n+2}(x)}{2}"
now putting n=1,0 we get -
"g^{''}(x)=-x\\dfrac {J_{-1}(x)-2J_1{(x)}}{2}"
Comments
Leave a comment