(D^2-D'^2-3D+3D')z=e^x-2y
There's some typing mistake in question, the correct equation is
"(D^2-3D)y=e^x-2y"
"\\Rightarrow(D^2-3D+2)y=e^x"
Auxiliary Equation (A.E.) is "D^2-3D+2=0"
"\\Rightarrow D^2-2D-D+2=0"
"\\Rightarrow D(D-2)-(D-2)=0"
"\\Rightarrow (D-1)(D-2)=0"
"\\therefore \\space D=1,2"
Complimentary Function (C.F) is
"y=c_1e^x+c_2e^{2x}"
For Particular Integral (P.I)
P.I "=\\dfrac{1}{D^2-3D+2}e^x"
"=\\dfrac{1}{(D-1)(D-2)}e^x"
"=-1\\bigg[\\dfrac{1}{(D-1)}e^x\\bigg]"
"=-1.x.\\dfrac{1}{1}e^x"
"=-xe^x"
Complete Solution (C.S) = C.F + P.I
"y=c_1e^x+c_2e^{2x}-xe^x"
Comments
Leave a comment