(d^2 y)/〖dx〗^2 +2 dy/dx+5y=34cos2x
Given equation is-
"\\dfrac{d^2y}{dx^2}+2\\dfrac{dy}{dx}+5y=34cos2x"
Its Auxilary equation is-
"m^2+2m+5=0\\\\[9pt]\nm=\\dfrac{-2\\pm\\sqrt{4-20}}{2}=\\dfrac{-2\\pm4i}{2}=-1\\pm 2i"
The roots are- "m= -1+2i \\text{ and } -1-2i"
Then complimentary function is-
"C.F. = e^{-x}(c_1cos2x+c_2sin2x)"
Particular Integral-
"PI=\\dfrac{43cos2x}{D^2+2D+5}"
"=\\dfrac{34cos2x}{-4+2D+5}\\\\[9pt]=\\dfrac{34cos2x}{2D+1}\\times \\dfrac{2D-1}{2D-1}\\\\[9pt]=\\dfrac{34(2D-1)cos2x}{4D^2-1}\\\\[9pt]=\\dfrac{34(-4sin2x-cos2x)}{4(-4)-1}\\\\[9pt]=8sin2x+2cos2x"
Hence The complete solution is-
y= CF+PI
"y=e^{-x}(c_1cos2x+c_2sin2x)+8sin2x+2cos2x"
Comments
Leave a comment