Given equation is-
d 2 y d x 2 + 2 d y d x + 5 y = 34 c o s 2 x \dfrac{d^2y}{dx^2}+2\dfrac{dy}{dx}+5y=34cos2x d x 2 d 2 y + 2 d x d y + 5 y = 34 cos 2 x
Its Auxilary equation is-
m 2 + 2 m + 5 = 0 m = − 2 ± 4 − 20 2 = − 2 ± 4 i 2 = − 1 ± 2 i m^2+2m+5=0\\[9pt]
m=\dfrac{-2\pm\sqrt{4-20}}{2}=\dfrac{-2\pm4i}{2}=-1\pm 2i m 2 + 2 m + 5 = 0 m = 2 − 2 ± 4 − 20 = 2 − 2 ± 4 i = − 1 ± 2 i
The roots are- m = − 1 + 2 i and − 1 − 2 i m= -1+2i \text{ and } -1-2i m = − 1 + 2 i and − 1 − 2 i
Then complimentary function is-
C . F . = e − x ( c 1 c o s 2 x + c 2 s i n 2 x ) C.F. = e^{-x}(c_1cos2x+c_2sin2x) C . F . = e − x ( c 1 cos 2 x + c 2 s in 2 x )
Particular Integral-
P I = 43 c o s 2 x D 2 + 2 D + 5 PI=\dfrac{43cos2x}{D^2+2D+5} P I = D 2 + 2 D + 5 43 cos 2 x
= 34 c o s 2 x − 4 + 2 D + 5 = 34 c o s 2 x 2 D + 1 × 2 D − 1 2 D − 1 = 34 ( 2 D − 1 ) c o s 2 x 4 D 2 − 1 = 34 ( − 4 s i n 2 x − c o s 2 x ) 4 ( − 4 ) − 1 = 8 s i n 2 x + 2 c o s 2 x =\dfrac{34cos2x}{-4+2D+5}\\[9pt]=\dfrac{34cos2x}{2D+1}\times \dfrac{2D-1}{2D-1}\\[9pt]=\dfrac{34(2D-1)cos2x}{4D^2-1}\\[9pt]=\dfrac{34(-4sin2x-cos2x)}{4(-4)-1}\\[9pt]=8sin2x+2cos2x = − 4 + 2 D + 5 34 cos 2 x = 2 D + 1 34 cos 2 x × 2 D − 1 2 D − 1 = 4 D 2 − 1 34 ( 2 D − 1 ) cos 2 x = 4 ( − 4 ) − 1 34 ( − 4 s in 2 x − cos 2 x ) = 8 s in 2 x + 2 cos 2 x
Hence The complete solution is-
y= CF+PI
y = e − x ( c 1 c o s 2 x + c 2 s i n 2 x ) + 8 s i n 2 x + 2 c o s 2 x y=e^{-x}(c_1cos2x+c_2sin2x)+8sin2x+2cos2x y = e − x ( c 1 cos 2 x + c 2 s in 2 x ) + 8 s in 2 x + 2 cos 2 x
Comments