Given equation is-
dx2d2y+2dxdy+5y=34cos2x
Its Auxilary equation is-
m2+2m+5=0m=2−2±4−20=2−2±4i=−1±2i
The roots are- m=−1+2i and −1−2i
Then complimentary function is-
C.F.=e−x(c1cos2x+c2sin2x)
Particular Integral-
PI=D2+2D+543cos2x
=−4+2D+534cos2x=2D+134cos2x×2D−12D−1=4D2−134(2D−1)cos2x=4(−4)−134(−4sin2x−cos2x)=8sin2x+2cos2x
Hence The complete solution is-
y= CF+PI
y=e−x(c1cos2x+c2sin2x)+8sin2x+2cos2x
Comments
Leave a comment