Answer to Question #189362 in Differential Equations for Farid Bahar

Question #189362

(d^2 y)/〖dx〗^2 +2 dy/dx+5y=34cos2x


1
Expert's answer
2021-05-07T11:59:04-0400

Given equation is-


d2ydx2+2dydx+5y=34cos2x\dfrac{d^2y}{dx^2}+2\dfrac{dy}{dx}+5y=34cos2x


Its Auxilary equation is-

m2+2m+5=0m=2±4202=2±4i2=1±2im^2+2m+5=0\\[9pt] m=\dfrac{-2\pm\sqrt{4-20}}{2}=\dfrac{-2\pm4i}{2}=-1\pm 2i


The roots are- m=1+2i and 12im= -1+2i \text{ and } -1-2i


Then complimentary function is-

C.F.=ex(c1cos2x+c2sin2x)C.F. = e^{-x}(c_1cos2x+c_2sin2x)


Particular Integral-

PI=43cos2xD2+2D+5PI=\dfrac{43cos2x}{D^2+2D+5}


=34cos2x4+2D+5=34cos2x2D+1×2D12D1=34(2D1)cos2x4D21=34(4sin2xcos2x)4(4)1=8sin2x+2cos2x=\dfrac{34cos2x}{-4+2D+5}\\[9pt]=\dfrac{34cos2x}{2D+1}\times \dfrac{2D-1}{2D-1}\\[9pt]=\dfrac{34(2D-1)cos2x}{4D^2-1}\\[9pt]=\dfrac{34(-4sin2x-cos2x)}{4(-4)-1}\\[9pt]=8sin2x+2cos2x


Hence The complete solution is-


y= CF+PI


y=ex(c1cos2x+c2sin2x)+8sin2x+2cos2xy=e^{-x}(c_1cos2x+c_2sin2x)+8sin2x+2cos2x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment