(x^2-y^2 -zy)p +(x^2-y^2-zx)q =z(x-y)
By lagrange's auxilary equation - "\\dfrac{dx}{x^{2}-y^{2}-zy}=\\dfrac{dy}{x^{2}-y^{2}-zx}=\\dfrac{dz}{z(x-y)}"
now in first two ratio , deviding numerator and denominator by x and y respectively ,
"= \\dfrac{xdx}{x^{3}-xy^{2}-xzy}=\\dfrac {ydy}{x^{2}y-y^{3}-zxy}" = "\\dfrac {{dz}\/{z}}{{x-y}}"
"=" "\\dfrac{xdx-ydy}{x^{3}+y^{3}-xy(x+y)}" "=\\dfrac{dz\/z}{x-y}"
"=\\dfrac{xdx-ydy}{(x+y)(x-y)^2}=\\dfrac{dz\/z}{x-y}"
"=\\dfrac{xdx-ydy}{x^{2}-y^{2}}=\\dfrac{dz}{z}"
"=\\dfrac{d(x^{2}-y^{2})}{2(x^{2}-y^{2})}" "=\\dfrac{dz}{z}" , now integerating both sides we get ,
"=z^{2}=x^{2}-y^{2}+c_1" which is required solution.
Comments
Leave a comment