The given equation is-
x2uxx+2xyuxy+uyy=u
Change of variable method-
From this eqn.b2−4ac=4x2y2−4x2y2=0 so eqn is parabolic
General form-
auxx+2buxy+cuyy+du=0
Charcterstics equation is-
dxdy=ab=x22xy=x2y
Let h=x,t=xy
⇒ux=ux(1)+ut(x2−y)=ux−x2yutuy=uh(0)+ut(x1=x1ut
uxx=uhh−x22yuht+x4y2utt+x32yut −(1)uyy=x21utt −(2)uxy=x1uxt−x3yutt−x21ut −(3)
Substituting eqn. (1), (2) and (3) in given Pde and we get-
h2uhh−2yuht+t2utt+2tut+t2utt+2yuht−2t2utt−2tut=u
h2uhh=u
uhh=h2u
or dh2d2u=h2u
Integrating and we get-
logudhdu=h−1+f(t)
Again Integrating and we get-
uh,t=−lnh+hf(t)+g(t)
On substituting the values of h and t we get-
u(x,y)=2x2+xf(xy)+g(xy)
Comments
Leave a comment