Answer to Question #190300 in Differential Equations for Utkarsh

Question #190300

Solve the full problem


X2uxx +2xyuxy+uyy=u


1
Expert's answer
2021-05-07T14:24:04-0400

The given equation is-

x2uxx+2xyuxy+uyy=ux^2u_{xx} +2xyu_{xy}+u_{yy}=u


Change of variable method-


From this eqn.b24ac=4x2y24x2y2=0b^2-4ac=4x^2y^2-4x^2y^2=0 so eqn is parabolic


General form-

auxx+2buxy+cuyy+du=0au_{xx}+2bu_{xy}+cu_{yy}+du=0


Charcterstics equation is-

dydx=ba=2xyx2=2yx\dfrac{dy}{dx}=\dfrac{b}{a}=\dfrac{2xy}{x^2}=\dfrac{2y}{x}


Let h=x,t=yxh=x ,t=\dfrac{y}{x}


ux=ux(1)+ut(yx2)=uxyx2utuy=uh(0)+ut(1x=1xut\Rightarrow u_x=u_x(1)+u_t(\dfrac{-y}{x^2})=u_x-\dfrac{y}{x^2}u_t u_y=u_h(0)+u_t(\dfrac{1}{x}=\dfrac{1}{x}u_t


uxx=uhh2yx2uht+y2x4utt+2yx3ut       (1)uyy=1x2utt      (2)uxy=1xuxtyx3utt1x2ut        (3)u_{xx}=u_{hh}-\dfrac{2y}{x^2}u_{ht}+\dfrac{y^2}{x^4}u_{tt}+\dfrac{2y}{x^3}u_t~~~~~~~-(1)\\[9pt]u_{yy}=\dfrac{1}{x^2}u_{tt} ~~~~~~-(2)\\[9pt]u_{xy}=\dfrac{1}{x}u_{xt}-\dfrac{y}{x^3}u_{tt}-\dfrac{1}{x^2}u_t~~~~~~~~-(3)



Substituting eqn. (1), (2) and (3) in given Pde and we get-


h2uhh2yuht+t2utt+2tut+t2utt+2yuht2t2utt2tut=uh^2u_{hh}-2yu_{ht}+t^2u_{tt}+2tu_t+t^2u_{tt}+2yu_{ht}-2t^2u_{tt}-2tu_{t}=u


h2uhh=uh^2u_{hh}=u


uhh=uh2u_{hh}=\dfrac{u}{h^2}


or d2udh2=uh2\dfrac{d^2u}{dh^2}=\dfrac{u}{h^2}


Integrating and we get-


logududh=1h+f(t)logu\dfrac{du}{dh}=\dfrac{-1}{h}+f(t)


Again Integrating and we get-


uh,t=lnh+hf(t)+g(t)u_{h,t}=-lnh+hf(t)+g(t)


On substituting the values of h and t we get-


u(x,y)=2x2+xf(yx)+g(yx)u(x,y)=2x^2+xf(\dfrac{y}{x})+g(\dfrac{y}{x})



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment