Solve the full problem
X2uxx +2xyuxy+uyy=u
The given equation is-
"x^2u_{xx} +2xyu_{xy}+u_{yy}=u"
Change of variable method-
From this eqn."b^2-4ac=4x^2y^2-4x^2y^2=0" so eqn is parabolic
General form-
"au_{xx}+2bu_{xy}+cu_{yy}+du=0"
Charcterstics equation is-
"\\dfrac{dy}{dx}=\\dfrac{b}{a}=\\dfrac{2xy}{x^2}=\\dfrac{2y}{x}"
Let "h=x ,t=\\dfrac{y}{x}"
"\\Rightarrow u_x=u_x(1)+u_t(\\dfrac{-y}{x^2})=u_x-\\dfrac{y}{x^2}u_t\n\n\n\nu_y=u_h(0)+u_t(\\dfrac{1}{x}=\\dfrac{1}{x}u_t"
"u_{xx}=u_{hh}-\\dfrac{2y}{x^2}u_{ht}+\\dfrac{y^2}{x^4}u_{tt}+\\dfrac{2y}{x^3}u_t~~~~~~~-(1)\\\\[9pt]u_{yy}=\\dfrac{1}{x^2}u_{tt}\n\n\n\n~~~~~~-(2)\\\\[9pt]u_{xy}=\\dfrac{1}{x}u_{xt}-\\dfrac{y}{x^3}u_{tt}-\\dfrac{1}{x^2}u_t~~~~~~~~-(3)"
Substituting eqn. (1), (2) and (3) in given Pde and we get-
"h^2u_{hh}-2yu_{ht}+t^2u_{tt}+2tu_t+t^2u_{tt}+2yu_{ht}-2t^2u_{tt}-2tu_{t}=u"
"h^2u_{hh}=u"
"u_{hh}=\\dfrac{u}{h^2}"
or "\\dfrac{d^2u}{dh^2}=\\dfrac{u}{h^2}"
Integrating and we get-
"logu\\dfrac{du}{dh}=\\dfrac{-1}{h}+f(t)"
Again Integrating and we get-
"u_{h,t}=-lnh+hf(t)+g(t)"
On substituting the values of h and t we get-
"u(x,y)=2x^2+xf(\\dfrac{y}{x})+g(\\dfrac{y}{x})"
Comments
Leave a comment