Question #190502

1. (y − 2)dx − (x − y − 1)dy = 0


1
Expert's answer
2021-05-07T14:39:59-0400

(y2)dx=(xy1)dy(y - 2)dx = (x - y - 1)dy

dydx=y2xy1\frac{{dy}}{{dx}} = \frac{{y - 2}}{{x - y - 1}}

Let

x=x^+3,y=y^+2x = \widehat x + 3,\,\,y = \widehat y + 2

Then

d(y^+2)d(x^+3)=y^+22x^+3y^21dy^dx^=y^x^y^\frac{{d\left( {\widehat y + 2} \right)}}{{d\left( {\widehat x + 3} \right)}} = \frac{{\widehat y + 2 - 2}}{{\widehat x + 3 - \widehat y - 2 - 1}} \Rightarrow \frac{{d\widehat y}}{{d\widehat x}} = \frac{{\widehat y}}{{\widehat x - \widehat y}}

Let

y^x^=ty^=tx^dy^dx^=tx^+t\frac{{\widehat y}}{{\widehat x}} = t \Rightarrow \widehat y = t\widehat x \Rightarrow \frac{{d\widehat y}}{{d\widehat x}} = t'\widehat x + t

Then

tx^+t=tx^x^tx^tx^=t1tttx^=tt+t21t=t21tx^dtdx^=t21t1ttdt=dx^x^(1t1)dt=dx^x^lntt=lnx^+Clny^x^y^x^lnx^=Ct'\widehat x + t = \frac{{t\widehat x}}{{\widehat x - t\widehat x}} \Rightarrow t'\widehat x = \frac{t}{{1 - t}} - t \Rightarrow t'\widehat x = \frac{{t - t + {t^2}}}{{1 - t}} = \frac{{{t^2}}}{{1 - t}} \Rightarrow \widehat x\frac{{dt}}{{d\widehat x}} = \frac{{{t^2}}}{{1 - t}} \Rightarrow \frac{{1 - t}}{t}dt = \frac{{d\widehat x}}{{\widehat x}} \Rightarrow \left( {\frac{1}{t} - 1} \right)dt = \frac{{d\widehat x}}{{\widehat x}} \Rightarrow \ln t - t = \ln \widehat x + C \Rightarrow \ln \frac{{\widehat y}}{{\widehat x}} - \frac{{\widehat y}}{{\widehat x}} - \ln \widehat x = C

x=x^+3x^=x3x = \widehat x + 3 \Rightarrow \widehat x = x - 3

y=y^+2y^=y2y = \widehat y + 2 \Rightarrow \widehat y = y - 2

Finally, we have

lny2x3y2x3ln(x3)=C\ln \frac{{y - 2}}{{x - 3}} - \frac{{y - 2}}{{x - 3}} - \ln (x - 3) = C

Answer: lny2x3y2x3ln(x3)=C\ln \frac{{y - 2}}{{x - 3}} - \frac{{y - 2}}{{x - 3}} - \ln (x - 3) = C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS