1. (y − 2)dx − (x − y − 1)dy = 0
"(y - 2)dx = (x - y - 1)dy"
"\\frac{{dy}}{{dx}} = \\frac{{y - 2}}{{x - y - 1}}"
Let
"x = \\widehat x + 3,\\,\\,y = \\widehat y + 2"
Then
"\\frac{{d\\left( {\\widehat y + 2} \\right)}}{{d\\left( {\\widehat x + 3} \\right)}} = \\frac{{\\widehat y + 2 - 2}}{{\\widehat x + 3 - \\widehat y - 2 - 1}} \\Rightarrow \\frac{{d\\widehat y}}{{d\\widehat x}} = \\frac{{\\widehat y}}{{\\widehat x - \\widehat y}}"
Let
"\\frac{{\\widehat y}}{{\\widehat x}} = t \\Rightarrow \\widehat y = t\\widehat x \\Rightarrow \\frac{{d\\widehat y}}{{d\\widehat x}} = t'\\widehat x + t"
Then
"t'\\widehat x + t = \\frac{{t\\widehat x}}{{\\widehat x - t\\widehat x}} \\Rightarrow t'\\widehat x = \\frac{t}{{1 - t}} - t \\Rightarrow t'\\widehat x = \\frac{{t - t + {t^2}}}{{1 - t}} = \\frac{{{t^2}}}{{1 - t}} \\Rightarrow \\widehat x\\frac{{dt}}{{d\\widehat x}} = \\frac{{{t^2}}}{{1 - t}} \\Rightarrow \\frac{{1 - t}}{t}dt = \\frac{{d\\widehat x}}{{\\widehat x}} \\Rightarrow \\left( {\\frac{1}{t} - 1} \\right)dt = \\frac{{d\\widehat x}}{{\\widehat x}} \\Rightarrow \\ln t - t = \\ln \\widehat x + C \\Rightarrow \\ln \\frac{{\\widehat y}}{{\\widehat x}} - \\frac{{\\widehat y}}{{\\widehat x}} - \\ln \\widehat x = C"
"x = \\widehat x + 3 \\Rightarrow \\widehat x = x - 3"
"y = \\widehat y + 2 \\Rightarrow \\widehat y = y - 2"
Finally, we have
"\\ln \\frac{{y - 2}}{{x - 3}} - \\frac{{y - 2}}{{x - 3}} - \\ln (x - 3) = C"
Answer: "\\ln \\frac{{y - 2}}{{x - 3}} - \\frac{{y - 2}}{{x - 3}} - \\ln (x - 3) = C"
Comments
Leave a comment