(y−2)dx=(x−y−1)dy
dxdy=x−y−1y−2
Let
x=x+3,y=y+2
Then
d(x+3)d(y+2)=x+3−y−2−1y+2−2⇒dxdy=x−yy
Let
xy=t⇒y=tx⇒dxdy=t′x+t
Then
t′x+t=x−txtx⇒t′x=1−tt−t⇒t′x=1−tt−t+t2=1−tt2⇒xdxdt=1−tt2⇒t1−tdt=xdx⇒(t1−1)dt=xdx⇒lnt−t=lnx+C⇒lnxy−xy−lnx=C
x=x+3⇒x=x−3
y=y+2⇒y=y−2
Finally, we have
lnx−3y−2−x−3y−2−ln(x−3)=C
Answer: lnx−3y−2−x−3y−2−ln(x−3)=C
Comments