Answer to Question #190502 in Differential Equations for randz

Question #190502

1. (y − 2)dx − (x − y − 1)dy = 0


1
Expert's answer
2021-05-07T14:39:59-0400

"(y - 2)dx = (x - y - 1)dy"

"\\frac{{dy}}{{dx}} = \\frac{{y - 2}}{{x - y - 1}}"

Let

"x = \\widehat x + 3,\\,\\,y = \\widehat y + 2"

Then

"\\frac{{d\\left( {\\widehat y + 2} \\right)}}{{d\\left( {\\widehat x + 3} \\right)}} = \\frac{{\\widehat y + 2 - 2}}{{\\widehat x + 3 - \\widehat y - 2 - 1}} \\Rightarrow \\frac{{d\\widehat y}}{{d\\widehat x}} = \\frac{{\\widehat y}}{{\\widehat x - \\widehat y}}"

Let

"\\frac{{\\widehat y}}{{\\widehat x}} = t \\Rightarrow \\widehat y = t\\widehat x \\Rightarrow \\frac{{d\\widehat y}}{{d\\widehat x}} = t'\\widehat x + t"

Then

"t'\\widehat x + t = \\frac{{t\\widehat x}}{{\\widehat x - t\\widehat x}} \\Rightarrow t'\\widehat x = \\frac{t}{{1 - t}} - t \\Rightarrow t'\\widehat x = \\frac{{t - t + {t^2}}}{{1 - t}} = \\frac{{{t^2}}}{{1 - t}} \\Rightarrow \\widehat x\\frac{{dt}}{{d\\widehat x}} = \\frac{{{t^2}}}{{1 - t}} \\Rightarrow \\frac{{1 - t}}{t}dt = \\frac{{d\\widehat x}}{{\\widehat x}} \\Rightarrow \\left( {\\frac{1}{t} - 1} \\right)dt = \\frac{{d\\widehat x}}{{\\widehat x}} \\Rightarrow \\ln t - t = \\ln \\widehat x + C \\Rightarrow \\ln \\frac{{\\widehat y}}{{\\widehat x}} - \\frac{{\\widehat y}}{{\\widehat x}} - \\ln \\widehat x = C"

"x = \\widehat x + 3 \\Rightarrow \\widehat x = x - 3"

"y = \\widehat y + 2 \\Rightarrow \\widehat y = y - 2"

Finally, we have

"\\ln \\frac{{y - 2}}{{x - 3}} - \\frac{{y - 2}}{{x - 3}} - \\ln (x - 3) = C"

Answer: "\\ln \\frac{{y - 2}}{{x - 3}} - \\frac{{y - 2}}{{x - 3}} - \\ln (x - 3) = C"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS