Answer to Question #190507 in Differential Equations for randz

Question #190507

4. (9x − 4y + 4)dx − (2x − y +) = 0


1
Expert's answer
2021-05-10T13:03:46-0400

Given equation is-

(9x4y+4)dx(2xy+1)dy=0(9x-4y+4)dx-(2x-y+1)dy=0


Let x=udx=dux=u\Rightarrow dx=du

y=v+1dy=dvy=v+1\Rightarrow dy=dv


(9u4v)du(2uv)dv=0(9u-4v)du-(2u-v)dv=0


Let u=vzdu=vdzu=vz \Rightarrow du=vdz

(9vz4v)(zdv+vdz)(2vzv)dv=0(9z4)(zdv+vdz)(2z1)dz=0(9z26z+1)dv+v(9z4)dz=0dvv+9z4(3z1)2dz=0dvv+3dz3z1dz(3z1)2=0\Rightarrow (9vz-4v)(zdv+vdz)-(2vz-v)dv=0\\[9pt] \Rightarrow (9z-4)(z dv+vdz)-(2z-1)dz=0 \\[9pt] \Rightarrow(9z^2-6z+1)dv+v(9z-4)dz=0 \\[9pt] \Rightarrow \dfrac{dv}{v}+\dfrac{9z-4}{(3z-1)^2}dz=0 \\[9pt] \Rightarrow \dfrac{dv}{v}+\dfrac{3dz}{3z-1}-\dfrac{dz}{(3z-1)^2}=0


Integrating Both the sides-


lnv+ln3z1+19z3+lnc=01=3(3z1)lnc(3zvv)lnv+ln|3z-1|+\dfrac{1}{9z-3}+lnc=0\\[9pt] \Rightarrow 1=-3(3z-1)ln|c(3zv-v)|




v=3(3vzv)lnc(3zvv)v=-3(3vz-v)ln|c(3zv-v)|


Putting z=uv,u=x and v=y1z=\dfrac{u}{v} , u=x \text{ and }v=y-1


so we get-

y=1+3(y3x1)lnc(3xy+1)y=1+3(y-3x-1)ln|c(3x-y+1)|


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment