Given equation is-
(9x−4y+4)dx−(2x−y+1)dy=0
Let x=u⇒dx=du
y=v+1⇒dy=dv
(9u−4v)du−(2u−v)dv=0
Let u=vz⇒du=vdz
⇒(9vz−4v)(zdv+vdz)−(2vz−v)dv=0⇒(9z−4)(zdv+vdz)−(2z−1)dz=0⇒(9z2−6z+1)dv+v(9z−4)dz=0⇒vdv+(3z−1)29z−4dz=0⇒vdv+3z−13dz−(3z−1)2dz=0
Integrating Both the sides-
lnv+ln∣3z−1∣+9z−31+lnc=0⇒1=−3(3z−1)ln∣c(3zv−v)∣
v=−3(3vz−v)ln∣c(3zv−v)∣
Putting z=vu,u=x and v=y−1
so we get-
y=1+3(y−3x−1)ln∣c(3x−y+1)∣
Comments
Leave a comment