4. (9x − 4y + 4)dx − (2x − y +) = 0
Given equation is-
"(9x-4y+4)dx-(2x-y+1)dy=0"
Let "x=u\\Rightarrow dx=du"
"y=v+1\\Rightarrow dy=dv"
"(9u-4v)du-(2u-v)dv=0"
Let "u=vz \\Rightarrow du=vdz"
"\\Rightarrow (9vz-4v)(zdv+vdz)-(2vz-v)dv=0\\\\[9pt]\n\n\n\n\\Rightarrow (9z-4)(z dv+vdz)-(2z-1)dz=0\n\n\\\\[9pt]\n\n\\Rightarrow(9z^2-6z+1)dv+v(9z-4)dz=0\n\n\\\\[9pt]\n\n\\Rightarrow \\dfrac{dv}{v}+\\dfrac{9z-4}{(3z-1)^2}dz=0\n\n\\\\[9pt]\n\n\\Rightarrow \\dfrac{dv}{v}+\\dfrac{3dz}{3z-1}-\\dfrac{dz}{(3z-1)^2}=0"
Integrating Both the sides-
"lnv+ln|3z-1|+\\dfrac{1}{9z-3}+lnc=0\\\\[9pt]\n\n\\Rightarrow 1=-3(3z-1)ln|c(3zv-v)|"
"v=-3(3vz-v)ln|c(3zv-v)|"
Putting "z=\\dfrac{u}{v} , u=x \\text{ and }v=y-1"
so we get-
"y=1+3(y-3x-1)ln|c(3x-y+1)|"
Comments
Leave a comment