We have given the differential equation,
(x+y−1)dx+(2x+2y+1)dy=0
dxdy=−2(x+y)+1x+y−1−−−−(1)
Substituting x+y=t
then, 1+dxdy=dxdt
dxdy=dxdt−1
Putting value in equation(1),
dxdt−1=2t+11−t
dxdt=t+21t+1
Separating terms and integrating both sides,
∫t+1tdt+21∫t+1dt=∫dx
t−log(t+1)+21log(1+t)=x+C
x+y−log(x+y+1)+21log(1+t)=x+C
Comments