3. (x + y − 1)dx + (2x + 2y + 1)dy = 0
We have given the differential equation,
"(x+y-1)dx+(2x+2y+1)dy = 0"
"\\dfrac{dy}{dx} = - \\dfrac{x+y-1}{2(x+y)+1} ----(1)"
Substituting "x+y = t"
then, "1 + \\dfrac{dy}{dx} = \\dfrac{dt}{dx}"
"\\dfrac{dy}{dx} = \\dfrac{dt}{dx} - 1"
Putting value in equation(1),
"\\dfrac{dt}{dx} - 1 = \\dfrac{1-t}{2t+1}"
"\\dfrac{dt}{dx} = \\dfrac{t+1}{t+\\dfrac{1}{2}}"
Separating terms and integrating both sides,
"\\int \\dfrac{t}{t+1}dt + \\dfrac{1}{2} \\int \\dfrac{dt}{t+1} = \\int dx"
"t- log(t+1) + \\dfrac{1}{2}log(1+t) = x + C"
"x+y-log(x+y+1)+ \\dfrac{1}{2}log(1+t) = x+C"
Comments
Leave a comment