cos(x)y′+sin(x)y=2cos3(x)(sin(x))−1....................(1)Initial conditions,y(4π)=32,0<=x<π/2Divideequation(1)bycosx,y′+tan(x)y=2cos2(x)(sin(x))−1.....................(1)Integrating factor isIF=e∫tanxdx=elnsecx=secxTherefore, the solution is given by,ysecx=∫2cos2(x)(sinx)−1secxdxysecx=2∫secxcosxdxysecx=2∫cotxdxysecx=2ln(sinx)+Cy=cosx(2ln(sinx)+C)From initial conditionsy(4π)=32=cos(4π)(2ln(sin(4π))+C)32=(21)(2ln(21)+C)3×2=ln(21)+C6=−ln(2)+CC=6+ln(2)Therefore, solution isy=cosx(2ln(sinx)+ln(2)+6)
b.
2xy−9x3+(2y+x2+1)dxdy=0,y(0)=−3(2xy−9x3)dx−(2y+x2+1)dy=0whereM=2xy−9x3,N=−(2y+x2+1)Now, find partial derivative wrt x and y,My=−2xNx=−2xSince,My=Nx.Therefore, given equation is a exact differential equation.Integrating first term, taking y as constant and in second term, integrating those terms those are independent of x.∫(2xy−9x3)dx−∫(2y+x2+1)dy=0x2y−49x4−y2−y=cPut initial condition,c=−24Therefore, required solution isx2y−49x4−y2−y=−244x2(3y2+10xy−3y+6)=cThus, general solution of the given differential equation is, 4x2(3y2+10xy−3y+6)=c.
c.
y′+x4y=x3y2,This is a bernoulli equation.Divide both side byy2y−2y′+x4y−1=x3,Puty−1=z,⟹−y−2dxdy=dxdzTherefore,newdifferentialequationis,−z′+x4z=x3z′−x4z=−x3Thisisalineardifferentialequation.zx41=∫(−x3×x41)dxzx41=∫x1dxzx41=lnx+c
Comments
Leave a comment