a.
cos(x)y'+sin(x)y=2cos^3(x)sin(x)-1 y(π/4)=3√2, 0<=x< π/2
b.
2xy-9x^3+(2y+x^2+1)dy/dx=0 y(0)=-3
c.
y'+4/x y=x^3y^2
a.
"cos(x)y'+sin(x)y=2cos^3(x)(sin(x))^{-1}....................(1)\\newline \n\\text{Initial conditions,} y(\\frac{\u03c0}{4})=3\\sqrt{2}, 0<=x< \u03c0\/2\\newline\nDivide equation (1) by cosx,\ny'+tan(x)y=2cos^2(x)(sin(x))^{-1}.....................(1)\\newline \n\\text{Integrating factor is}\\space \\newline \nIF=e^{\\int tanx dx}=e^{lnsecx}=secx\\newline\n\\text{Therefore, the solution is given by,}\\newline\ny \\space secx=\\int 2cos^2(x)(sinx)^{-1} secx dx\\newline\ny \\space secx=2\\int \\frac{cosx}{ secx }dx\\newline\ny \\space secx=2\\int cotx\\space dx\\newline\ny \\space secx=2ln(sinx)+C\\newline\ny=cosx(2ln(sinx)+C)\\newline\n\\text{From initial conditions}\\newline\ny(\\frac{\u03c0}{4})=3\\sqrt{2}=cos(\\frac{\u03c0}{4})(2ln(sin(\\frac{\u03c0}{4}))+C)\\newline\n3\\sqrt{2}=(\\frac{1}{\\sqrt{2}})(2ln(\\frac{1}{\\sqrt{2}})+C)\\newline\n3\\times 2=ln(\\frac{1}{2})+C\\newline\n6=-ln(2)+C\\newline\nC=6+ln(2)\\newline\n\\text{Therefore, solution is}\\newline\ny=cosx(2ln(sinx)+ln(2)+6)"
b.
"2xy-9x^3+(2y+x^2+1)\\frac{dy}{dx}=0,\\space y(0)=-3\\newline\n(2xy-9x^3)dx-(2y+x^2+1)dy=0 \\newline\n\\text{where}\\space M=2xy-9x^3,\nN=-(2y+x^2+1)\n\\newline\n\\text{Now, find partial derivative wrt x and y,}\n\\newline\nM_{y}=-2x\n\\newline\nN_{x}=-2x\n\\newline\n\\text{Since,}M_{y}= N_{x}.\n\\newline\n\\text{Therefore, given equation is a exact differential equation.}\n\\newline \\text{Integrating first term, taking y as constant }\n\\newline\\text{and in second term, integrating those terms}\\newline\\text{ those are independent of x.}\n\\int(2xy-9x^3)dx-\\int(2y+x^2+1)dy=0 \\newline\nx^2y-\\frac{9x^4}{4}-y^2-y=c\\newline\n\\text{Put initial condition,}\\newline\nc=-24\\newline\n\\text{Therefore, required solution is}\nx^2y-\\frac{9x^4}{4}-y^2-y=-24\n4x^2(3y^2+10xy-3y+6)=c\\newline\n\\newline\n\\text{Thus, general solution of the given differential equation is, }\\newline4x^2(3y^2+10xy-3y+6)=c."
c.
"y'+\\frac{4}{x} y=x^3y^2,\\space \\newline\n\\text{This is a bernoulli equation.}\n\\text{Divide both side by}y^2\\newline\ny^{-2}y'+\\frac{4}{x} y^{-1}=x^3,\\space \\newline\nPut y^{-1}=z,\n\\implies -y^{-2}\\frac{dy}{dx}=\\frac{dz}{dx}\\newline\nTherefore, new differential equation is, \\newline\n-z'+\\frac{4}{x} z=x^3 \\newline\nz'-\\frac{4}{x} z=-x^3 \\newline\nThis is a linear differential equation.\\newline\nz\\frac{1}{x^4}=\\int(-x^3 \\times \\frac{1}{x^4} )dx \\newline\nz\\frac{1}{x^4}=\\int\\frac{1}{x} dx \\newline\nz\\frac{1}{x^4}=lnx+c \\newline"
Comments
Leave a comment