Given, y''+3y=0,y(0)=0 and y'(3)=0
⇒ y ′ ′ + 3 y = 0 \Rightarrow y''+3y=0 ⇒ y ′′ + 3 y = 0
( D 2 + 3 ) y = 0 (D^2+3)y=0 ( D 2 + 3 ) y = 0
So Auxiliary equation-
m 2 + 3 = 0 ⇒ m = ± 3 i m^2+3=0\Rightarrow m=\pm \sqrt{3}i m 2 + 3 = 0 ⇒ m = ± 3 i
Solution of the equation is-
y = c 1 c o s 3 x + c 2 s i n 3 x − ( 1 ) y=c_1cos\sqrt{3}x+c_2sin\sqrt{3}x~~~~~-(1) y = c 1 cos 3 x + c 2 s in 3 x − ( 1 )
At x=0,y=0
0 = c 1 c o s 0 + c 2 s i n 0 ⇒ c 1 = 0 0=c_1cos0+c_2sin 0\Rightarrow c_1=0 0 = c 1 cos 0 + c 2 s in 0 ⇒ c 1 = 0
Differentiating equation (1) w.r.t. x-
y ′ = − 3 c 1 s i n 3 x + 3 c 2 c o s 3 x y'=-\sqrt{3}c_1sin\sqrt{3}x+\sqrt{3}c_2cos\sqrt{3}x y ′ = − 3 c 1 s in 3 x + 3 c 2 cos 3 x
Also, y ′ ( 3 ) = 0 y'(3)=0 y ′ ( 3 ) = 0
⇒ 0 = − 3 c 1 s i n 3 3 + 3 c 2 c o s 3 3 \Rightarrow 0=-\sqrt{3}c_1sin3\sqrt{3}+\sqrt{3}c_2 cos3\sqrt{3} ⇒ 0 = − 3 c 1 s in 3 3 + 3 c 2 cos 3 3
As c 1 = 0 ⇒ c 2 = 0 c_1=0\Rightarrow c_2=0 c 1 = 0 ⇒ c 2 = 0
Solution of equation is
y=0
Comments