y"+3y=0 , y(0)=0 and y'(3)=0
Given, y''+3y=0,y(0)=0 and y'(3)=0
"\\Rightarrow y''+3y=0"
"(D^2+3)y=0"
So Auxiliary equation-
"m^2+3=0\\Rightarrow m=\\pm \\sqrt{3}i"
Solution of the equation is-
"y=c_1cos\\sqrt{3}x+c_2sin\\sqrt{3}x~~~~~-(1)"
At x=0,y=0
"0=c_1cos0+c_2sin 0\\Rightarrow c_1=0"
Differentiating equation (1) w.r.t. x-
"y'=-\\sqrt{3}c_1sin\\sqrt{3}x+\\sqrt{3}c_2cos\\sqrt{3}x"
Also, "y'(3)=0"
"\\Rightarrow 0=-\\sqrt{3}c_1sin3\\sqrt{3}+\\sqrt{3}c_2 cos3\\sqrt{3}"
As "c_1=0\\Rightarrow c_2=0"
Solution of equation is
y=0
Comments
Leave a comment