Question #190654

y"+3y=0 , y(0)=0 and y'(3)=0


1
Expert's answer
2021-05-12T01:58:00-0400

Given, y''+3y=0,y(0)=0 and y'(3)=0


y+3y=0\Rightarrow y''+3y=0


(D2+3)y=0(D^2+3)y=0


So Auxiliary equation-

m2+3=0m=±3im^2+3=0\Rightarrow m=\pm \sqrt{3}i


Solution of the equation is-


y=c1cos3x+c2sin3x     (1)y=c_1cos\sqrt{3}x+c_2sin\sqrt{3}x~~~~~-(1)


At x=0,y=0


0=c1cos0+c2sin0c1=00=c_1cos0+c_2sin 0\Rightarrow c_1=0


Differentiating equation (1) w.r.t. x-


y=3c1sin3x+3c2cos3xy'=-\sqrt{3}c_1sin\sqrt{3}x+\sqrt{3}c_2cos\sqrt{3}x


Also, y(3)=0y'(3)=0


0=3c1sin33+3c2cos33\Rightarrow 0=-\sqrt{3}c_1sin3\sqrt{3}+\sqrt{3}c_2 cos3\sqrt{3}


As c1=0c2=0c_1=0\Rightarrow c_2=0


Solution of equation is

y=0

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS