Question #191025
  1. ysin 2x dx-dy-y^2dy-cos^2xdy=0
1
Expert's answer
2021-05-10T13:08:13-0400

The given differential equation is


ysin2xdx(1+y2+cos2x)dy=0y sin2x dx -(1+y^2+cos^2x)dy=0

Which is of the form Mdx+Ndy=0Mdx +Ndy =0 .

Where 


M=ysin2x and N=(1+y2+cos2x)M=y sin2x \ \text{and} \ N=-(1+y^2+cos2x)



My=ysin2xy=sin2x\frac{\partial{M}}{\partial{y}}=\frac{\partial{ysin2x}}{\partial{y}}=sin2xNx=(1+y2+cos2x)x=(2cosx×sinx)\frac{\partial{N}}{\partial{x}}=\frac{\partial{-(1+y^2+cos^2x)}}{\partial{x}}=-(2cosx×-sinx)

=2sinxcos=sin2x=2sinxcos =sin2xx


As My=Nx\frac{\partial{M}}{\partial{y}}=\frac{\partial{N}}{\partial{x}} ,Hence the given differential equation is an exact differential equation.


\therefore \ The solution of the given differential equation is


y=const.Mdx+(only those therms of N which do not contains x)dy\int_{y=const.}Mdx+\int \text{(only those therms of N which do not contains x)}dy

=y=const.ysin2x+(1+y2)dy=\int_{y=const.}ysin2x+\int{-(1+y^2)}dy


=ysin2xdx(1+y2)dy=y\int sin2x dx-\int(1+y^2)dy

=ycos2x2yy33+c=-\frac{ycos2x}{2}-y-\frac{y^3}{3}+c

Where "c" is the integration constant


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS