y'' − y' + 1/4 y = 8 + ex/2
y'' − y' + 1/4 y = 8 + ex/2
"= y''(x)-y'(x)+\\frac{1}{4}y(x)=8+e^{x\\over2}"
the general solution will be sum of the complementary solution and particular solution.
we find the complementary solution by solving "\\frac{d^2y(x)}{dx^2}-\\frac{dy(x)}{dx}+\\frac{y(x)}{4}=0"
comes out to be
"y(x)=y_1(x)+y_2(x)"
"y(x)=c_1e^{x\\over 2}+c_2e^{x\\over 2}" .........(1)
now find particular solution
"\\frac{d^2y(x)}{dx^2}-\\frac{dy(x)}{dx}+\\frac{y(x)}{4}=e^{x\\over 2}"
comes out to be
"y_p(x)=\\frac{1}{2}e^{x\\over 2}x^2+32" ............(2)
combining both (1) and (2) we get the answer
"\\boxed{y(x)=c_2e^{x\\over 2}x+c_1e^{x\\over 2}+\\frac{1}{2}e^{x\\over 2}x^2+32}answer"
Comments
Leave a comment