Question #191326

y'' − y' + 1/4 y = 8 + ex/2

1
Expert's answer
2021-05-11T06:33:08-0400

y'' − y' + 1/4 y = 8 + ex/2


=y(x)y(x)+14y(x)=8+ex2= y''(x)-y'(x)+\frac{1}{4}y(x)=8+e^{x\over2}


the general solution will be sum of the complementary solution and particular solution.


we find the complementary solution by solving d2y(x)dx2dy(x)dx+y(x)4=0\frac{d^2y(x)}{dx^2}-\frac{dy(x)}{dx}+\frac{y(x)}{4}=0


comes out to be

y(x)=y1(x)+y2(x)y(x)=y_1(x)+y_2(x)


y(x)=c1ex2+c2ex2y(x)=c_1e^{x\over 2}+c_2e^{x\over 2} .........(1)


now find particular solution

d2y(x)dx2dy(x)dx+y(x)4=ex2\frac{d^2y(x)}{dx^2}-\frac{dy(x)}{dx}+\frac{y(x)}{4}=e^{x\over 2}


comes out to be

yp(x)=12ex2x2+32y_p(x)=\frac{1}{2}e^{x\over 2}x^2+32 ............(2)


combining both (1) and (2) we get the answer


y(x)=c2ex2x+c1ex2+12ex2x2+32answer\boxed{y(x)=c_2e^{x\over 2}x+c_1e^{x\over 2}+\frac{1}{2}e^{x\over 2}x^2+32}answer



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS