Answer to Question #192862 in Differential Equations for Sourav

Question #192862

Determine all the first and second order partial derivatives for the function:

u(x,t)=Ce^(1-n²π²)t sin (nπx)


1
Expert's answer
2021-05-13T18:16:06-0400

Let us determine all the first order partial derivatives for the function

"u(x,t)=Ce^{(1-n\u00b2\u03c0\u00b2)t} \\sin (n\u03c0x):"


"\\frac{{\\partial}u(x,t)}{\\partial x}=Cn\\pi e^{(1-n\u00b2\u03c0\u00b2)t} \\cos (n\u03c0x), \\ \\ \n\\frac{{\\partial}u(x,t)}{\\partial t}=C(1-n\u00b2\u03c0\u00b2)e^{(1-n\u00b2\u03c0\u00b2)t} \\sin (n\u03c0x)."


Let us determine all the second order partial derivatives for the function

"u(x,t)=Ce^{(1-n\u00b2\u03c0\u00b2)t} \\sin (n\u03c0x):"


"\\frac{{\\partial}u^2(x,t)}{\\partial x^2}=-Cn^2\\pi^2 e^{(1-n\u00b2\u03c0\u00b2)t} \\sin (n\u03c0x), \\ \\ \n\\frac{{\\partial}u^2(x,t)}{\\partial t^2}=C(1-n\u00b2\u03c0\u00b2)^2e^{(1-n\u00b2\u03c0\u00b2)t} \\sin (n\u03c0x),"


"\\frac{{\\partial}u^2(x,t)}{\\partial x \\partial t}=Cn\\pi(1-n\u00b2\u03c0\u00b2) e^{(1-n\u00b2\u03c0\u00b2)t} \\cos (n\u03c0x), \\ \\ \n\\frac{{\\partial}u^2(x,t)}{\\partial t \\partial x}=Cn\\pi (1-n\u00b2\u03c0\u00b2)e^{(1-n\u00b2\u03c0\u00b2)t} \\cos (n\u03c0x)."





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS