Let us determine all the first order partial derivatives for the function
u(x,t)=Ce(1−n2π2)tsin(nπx):
∂x∂u(x,t)=Cnπe(1−n2π2)tcos(nπx), ∂t∂u(x,t)=C(1−n2π2)e(1−n2π2)tsin(nπx).
Let us determine all the second order partial derivatives for the function
u(x,t)=Ce(1−n2π2)tsin(nπx):
∂x2∂u2(x,t)=−Cn2π2e(1−n2π2)tsin(nπx), ∂t2∂u2(x,t)=C(1−n2π2)2e(1−n2π2)tsin(nπx),
∂x∂t∂u2(x,t)=Cnπ(1−n2π2)e(1−n2π2)tcos(nπx), ∂t∂x∂u2(x,t)=Cnπ(1−n2π2)e(1−n2π2)tcos(nπx).
Comments