Determine all the first and second order partial derivatives for the function:
u(x,t)=Ce^(1-n²π²)t sin (nπx)
Let us determine all the first order partial derivatives for the function
"u(x,t)=Ce^{(1-n\u00b2\u03c0\u00b2)t} \\sin (n\u03c0x):"
"\\frac{{\\partial}u(x,t)}{\\partial x}=Cn\\pi e^{(1-n\u00b2\u03c0\u00b2)t} \\cos (n\u03c0x), \\ \\ \n\\frac{{\\partial}u(x,t)}{\\partial t}=C(1-n\u00b2\u03c0\u00b2)e^{(1-n\u00b2\u03c0\u00b2)t} \\sin (n\u03c0x)."
Let us determine all the second order partial derivatives for the function
"u(x,t)=Ce^{(1-n\u00b2\u03c0\u00b2)t} \\sin (n\u03c0x):"
"\\frac{{\\partial}u^2(x,t)}{\\partial x^2}=-Cn^2\\pi^2 e^{(1-n\u00b2\u03c0\u00b2)t} \\sin (n\u03c0x), \\ \\ \n\\frac{{\\partial}u^2(x,t)}{\\partial t^2}=C(1-n\u00b2\u03c0\u00b2)^2e^{(1-n\u00b2\u03c0\u00b2)t} \\sin (n\u03c0x),"
"\\frac{{\\partial}u^2(x,t)}{\\partial x \\partial t}=Cn\\pi(1-n\u00b2\u03c0\u00b2) e^{(1-n\u00b2\u03c0\u00b2)t} \\cos (n\u03c0x), \\ \\ \n\\frac{{\\partial}u^2(x,t)}{\\partial t \\partial x}=Cn\\pi (1-n\u00b2\u03c0\u00b2)e^{(1-n\u00b2\u03c0\u00b2)t} \\cos (n\u03c0x)."
Comments
Leave a comment