Let the solution of above differential equation be
y=aoxm+a1xm+1+a2xm+2+......................+anxn+m
dxdy=maoxm−1+(m+1)a1xm+(m+2)a2xm+1+.........................
dx2d2y=m(m−1)aoxm−2+(m+1)ma1xm−1+(m+2)(m+1)a2xm+..................
x2dx2d2y+4xdxdy+(x2+2)y=0
x2[m(m−1)aoxm−2+(m+1)ma1xm−1+(m+2)(m+1)a2xm+..................]+4x[maoxm−1+(m+1)a1xm+(m+2)a2xm+1+.........................]+(x2+2)[aoxm+a1xm+1+a2xm+2+......................+anxn+m]=0
Equating the coefficient of lowest degree in x (which is xm) equal to zero
m(m−1)ao+4mao+2ao=0
m2+3m+2=0
m=−2,−1
For further powers of x,
xm+1:
m(m+1)a1+4(m+1)a1+2a1=0
m2+m+4m+4+2=0
m2+5m+6=0
m=−2,−3
Since the equation has three roots it cannot be solved by frobenius method
The given differential equation refers to Sturm-Liouville equation
Comments