Question #192863

Using the Frobenius method, solve the following ODE:

x²y"+4xy'+(x²+2)y=0


1
Expert's answer
2021-05-18T05:33:02-0400

Let the solution of above differential equation be

y=aoxm+a1xm+1+a2xm+2+......................+anxn+my=a_ox^m+a_1x^{m+1}+a_2x^{m+2}+......................+a_nx^{n+m}


dydx=maoxm1+(m+1)a1xm+(m+2)a2xm+1+.........................\dfrac{dy}{dx}=ma_ox^{m-1}+(m+1)a_1x^m+(m+2)a_2x^{m+1}+.........................


d2ydx2=m(m1)aoxm2+(m+1)ma1xm1+(m+2)(m+1)a2xm+..................\dfrac{d^2y}{dx^2}=m(m-1)a_ox^{m-2}+(m+1)ma_1x^{m-1}+(m+2)(m+1)a_2x^{m}+..................



x2d2ydx2+4xdydx+(x2+2)y=0x^2\dfrac{d^2y}{dx^2}+4x\dfrac{dy}{dx}+(x^2+2)y=0


x2[m(m1)aoxm2+(m+1)ma1xm1+(m+2)(m+1)a2xm+..................]+4x[maoxm1+(m+1)a1xm+(m+2)a2xm+1+.........................]+(x2+2)[aoxm+a1xm+1+a2xm+2+......................+anxn+m]=0x^2[m(m-1)a_ox^{m-2}+(m+1)ma_1x^{m-1}+(m+2)(m+1)a_2x^{m}+..................]+4x[ma_ox^{m-1}+(m+1)a_1x^m+(m+2)a_2x^{m+1}+.........................]+(x^2+2)[a_ox^m+a_1x^{m+1}+a_2x^{m+2}+......................+a_nx^{n+m}]=0


Equating the coefficient of lowest degree in x (which is xm) equal to zero

m(m1)ao+4mao+2ao=0m(m-1)a_o+4ma_o+2a_o=0

m2+3m+2=0m^2+3m+2=0

m=2,1m=-2,-1


For further powers of x,

xm+1x^{m+1}:

m(m+1)a1+4(m+1)a1+2a1=0m(m+1)a_1+4(m+1)a_1+2a_1=0

m2+m+4m+4+2=0m^2+m+4m+4+2=0

m2+5m+6=0m^2+5m+6=0

m=2,3m=-2,-3


Since the equation has three roots it cannot be solved by frobenius method

The given differential equation refers to Sturm-Liouville equation



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS