Answer to Question #193561 in Differential Equations for Nishona

Question #193561

cotxdy=ydx=(cotx)(3e^sinx)dx


1
Expert's answer
2021-05-17T14:56:14-0400

If cotxdy=ydx=(cotx)(3e^sinx)dx then {ydx=cotxdyydx=cotx3esinxdx\left\{ \begin{array}{l} ydx = \cot xdy\\ ydx = \cot x \cdot 3{e^{\sin x}}dx \end{array} \right.

From 1-st equation:

dyy=sinxcosxdx=dcosxcosxlny=lncosx+lnC1=lnC1cosxy=C1cosx\frac{{dy}}{y} = \frac{{\sin x}}{{\cos x}}dx = - \frac{{d\cos x}}{{\cos x}} \Rightarrow \ln y = - \ln \cos x + \ln {C_1} = \ln \frac{{{C_1}}}{{\cos x}} \Rightarrow y = \frac{{{C_1}}}{{\cos x}}

From 2-nd equation:


ydx=cotx3esinxdxC1cosxdx=cotx3esinxdxC1sinxcosxdx=cosx3esinxdxC1dcosxcosx=3esinxdsinxC1lncosx=3esinx+C2C1ln1cosx=3esinx+C2ydx = \cot x \cdot 3{e^{\sin x}}dx \Rightarrow \frac{{{C_1}}}{{\cos x}}dx = \cot x \cdot 3{e^{\sin x}}dx \Rightarrow \frac{{{C_1}\sin x}}{{\cos x}}dx = \cos x \cdot 3{e^{\sin x}}dx \Rightarrow - {C_1}\frac{{d\cos x}}{{\cos x}} = 3{e^{\sin x}}d\sin x \Rightarrow - {C_1}\ln \cos x = 3{e^{\sin x}} + {C_2} \Rightarrow {C_1}\ln \frac{1}{{\cos x}} = 3{e^{\sin x}} + {C_2}

The resulting equality will not hold for any C1,C2{C_1}, {C_2} .

So, system has no solutions.

Answer: There are no solutions.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment