cotxdy=ydx=(cotx)(3e^sinx)dx
If cotxdy=ydx=(cotx)(3e^sinx)dx then "\\left\\{ \\begin{array}{l}\nydx = \\cot xdy\\\\\nydx = \\cot x \\cdot 3{e^{\\sin x}}dx\n\\end{array} \\right."
From 1-st equation:
"\\frac{{dy}}{y} = \\frac{{\\sin x}}{{\\cos x}}dx = - \\frac{{d\\cos x}}{{\\cos x}} \\Rightarrow \\ln y = - \\ln \\cos x + \\ln {C_1} = \\ln \\frac{{{C_1}}}{{\\cos x}} \\Rightarrow y = \\frac{{{C_1}}}{{\\cos x}}"
From 2-nd equation:
"ydx = \\cot x \\cdot 3{e^{\\sin x}}dx \\Rightarrow \\frac{{{C_1}}}{{\\cos x}}dx = \\cot x \\cdot 3{e^{\\sin x}}dx \\Rightarrow \\frac{{{C_1}\\sin x}}{{\\cos x}}dx = \\cos x \\cdot 3{e^{\\sin x}}dx \\Rightarrow - {C_1}\\frac{{d\\cos x}}{{\\cos x}} = 3{e^{\\sin x}}d\\sin x \\Rightarrow - {C_1}\\ln \\cos x = 3{e^{\\sin x}} + {C_2} \\Rightarrow {C_1}\\ln \\frac{1}{{\\cos x}} = 3{e^{\\sin x}} + {C_2}"
The resulting equality will not hold for any "{C_1}, {C_2}" .
So, system has no solutions.
Answer: There are no solutions.
Comments
Leave a comment