If cotxdy=ydx=(cotx)(3e^sinx)dx then {ydx=cotxdyydx=cotx⋅3esinxdx
From 1-st equation:
ydy=cosxsinxdx=−cosxdcosx⇒lny=−lncosx+lnC1=lncosxC1⇒y=cosxC1
From 2-nd equation:
ydx=cotx⋅3esinxdx⇒cosxC1dx=cotx⋅3esinxdx⇒cosxC1sinxdx=cosx⋅3esinxdx⇒−C1cosxdcosx=3esinxdsinx⇒−C1lncosx=3esinx+C2⇒C1lncosx1=3esinx+C2
The resulting equality will not hold for any C1,C2 .
So, system has no solutions.
Answer: There are no solutions.
Comments
Leave a comment