"Solution""2x(y+z^2)\\frac{dz}{dx}+y(2y+z^2)\\frac{dz}{dy}=z^2""\\frac{dx}{2x(y+z^2)}=\\frac{dy}{y(2y+z^2)}=\\frac{dz}{z^2}"
"y\\frac{dx}{2xy^2+2xyz^2}=x\\frac{dy}{2xy^2+xyz^2}=xy\\frac{dz}{xyz^2}""\\frac{ydx\u2212xdy\u2212xydz}{2xy2+2xyz2\u22122xy2\u2212xyz2\u2212xyz2}=\\frac{ydx\u2212xdy\u2212xydz}{0}""ydx\u2212xdy\u2212xydz=0""\\frac{dx}{x}\u2212\\frac{dy}{y}\u2212dz=0""lnx\u2212lny\u2212z=c""z=ln( \\frac{x}{y})+C"2.)
"yz(z^2+2z\u22122y)=x^2""yz^3+2yz^2\u22122y2z=x^2"Differentiate respect to x:
"3yz^2p+4yzp\u22122y^2p=2x""py(3z^2+4z\u22122y)=2x"Differentiate respect to y:
"z^3+3z^2yq+2z^2+4yzq\u22124yz\u22122y^2q=0""qy(3z^2+4z\u22122y)+z^3+2z^2\u22124yz=0""\\therefore" we have:
"3z^2+4z\u22122y=\\frac{2x}{py}""\\frac{2xq}{p}+z^3+2z^2\u22124yz=0"Since
"p=\\frac{1}{x}""q=\\frac{\u22121}{y}"then:
"\\frac{\u22122x^2}{y}+z^3+2z^2\u22124yz=0""\u22122x^2+y(z^3+2z^2\u22124yz)=0""yz(z^2+2z\u22124y)=2x^2"So:
"\\frac{z^2+2z\u22124y}{z^2+2z\u22122y}=2""z^2+2z\u22124y=2z^2+4z\u22124y""z^2+2z=0"So we get that the statement can be proved if
"z=0, or""z=\u22122"
Comments
Leave a comment