Question #179785

find the general solution of the equation 2x(y+z^2)p + y(2y+z^2)q = z^3. and deduce that

yz(z^2+yz-2y) =x^2 is a solution.


1
Expert's answer
2021-04-28T16:26:13-0400
SolutionSolution2x(y+z2)dzdx+y(2y+z2)dzdy=z22x(y+z^2)\frac{dz}{dx}+y(2y+z^2)\frac{dz}{dy}=z^2dx2x(y+z2)=dyy(2y+z2)=dzz2\frac{dx}{2x(y+z^2)}=\frac{dy}{y(2y+z^2)}=\frac{dz}{z^2}




ydx2xy2+2xyz2=xdy2xy2+xyz2=xydzxyz2y\frac{dx}{2xy^2+2xyz^2}=x\frac{dy}{2xy^2+xyz^2}=xy\frac{dz}{xyz^2}ydxxdyxydz2xy2+2xyz22xy2xyz2xyz2=ydxxdyxydz0\frac{ydx−xdy−xydz}{2xy2+2xyz2−2xy2−xyz2−xyz2}=\frac{ydx−xdy−xydz}{0}ydxxdyxydz=0ydx−xdy−xydz=0dxxdyydz=0\frac{dx}{x}−\frac{dy}{y}−dz=0lnxlnyz=clnx−lny−z=cz=ln(xy)+Cz=ln( \frac{x}{y})+C

2.)



yz(z2+2z2y)=x2yz(z^2+2z−2y)=x^2yz3+2yz22y2z=x2yz^3+2yz^2−2y2z=x^2

Differentiate respect to x:



3yz2p+4yzp2y2p=2x3yz^2p+4yzp−2y^2p=2xpy(3z2+4z2y)=2xpy(3z^2+4z−2y)=2x

Differentiate respect to y:



z3+3z2yq+2z2+4yzq4yz2y2q=0z^3+3z^2yq+2z^2+4yzq−4yz−2y^2q=0qy(3z2+4z2y)+z3+2z24yz=0qy(3z^2+4z−2y)+z^3+2z^2−4yz=0

\therefore we have:



3z2+4z2y=2xpy3z^2+4z−2y=\frac{2x}{py}2xqp+z3+2z24yz=0\frac{2xq}{p}+z^3+2z^2−4yz=0

Since



p=1xp=\frac{1}{x}q=1yq=\frac{−1}{y}

then:



2x2y+z3+2z24yz=0\frac{−2x^2}{y}+z^3+2z^2−4yz=02x2+y(z3+2z24yz)=0−2x^2+y(z^3+2z^2−4yz)=0yz(z2+2z4y)=2x2yz(z^2+2z−4y)=2x^2

So:



z2+2z4yz2+2z2y=2\frac{z^2+2z−4y}{z^2+2z−2y}=2z2+2z4y=2z2+4z4yz^2+2z−4y=2z^2+4z−4yz2+2z=0z^2+2z=0

So we get that the statement can be proved if


z=0,orz=0, orz=2z=−2

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS