Solution2x(y+z2)dxdz+y(2y+z2)dydz=z22x(y+z2)dx=y(2y+z2)dy=z2dz
y2xy2+2xyz2dx=x2xy2+xyz2dy=xyxyz2dz2xy2+2xyz2−2xy2−xyz2−xyz2ydx−xdy−xydz=0ydx−xdy−xydzydx−xdy−xydz=0xdx−ydy−dz=0lnx−lny−z=cz=ln(yx)+C2.)
yz(z2+2z−2y)=x2yz3+2yz2−2y2z=x2Differentiate respect to x:
3yz2p+4yzp−2y2p=2xpy(3z2+4z−2y)=2xDifferentiate respect to y:
z3+3z2yq+2z2+4yzq−4yz−2y2q=0qy(3z2+4z−2y)+z3+2z2−4yz=0∴ we have:
3z2+4z−2y=py2xp2xq+z3+2z2−4yz=0Since
p=x1q=y−1then:
y−2x2+z3+2z2−4yz=0−2x2+y(z3+2z2−4yz)=0yz(z2+2z−4y)=2x2So:
z2+2z−2yz2+2z−4y=2z2+2z−4y=2z2+4z−4yz2+2z=0So we get that the statement can be proved if
z=0,orz=−2
Comments