Why integral t2(-e-t) with limits t= 0, ∞ becomes zero.
"\\bigstar"
Solution
"\\boxed{\\int_0^\\infin t^2(-e^{-t})dt}"
"-\\int_0^\\infin t^2(e^{-t})dt"
integrate by parts:
"\u222b\nf\ng\n\u2032\n=\nf\ng\n\u2212\n\u222b\nf\n\u2032\ng"
"f\n=\nt^\n2\n,\t\ng\n\u2032\n=\ne\n^{\u2212\n\nt}\\\\\n\u2193\n steps \t\t\n\\\\\nf\n\u2032\n=\n2\nt\n,\t\ng\n=\n\u2212\ne\n^{\u2212\nt}"
"=\n\u2212\nt^\n2\ne\n^{\u2212\nt}\n\u2212\n\u222b\n\u2212\n2\nt\ne\n^{\u2212\nt}\nd\nt"
Now solving:
"{\\displaystyle\\int}-2t\\mathrm{e}^{-t}\\,\\mathrm{d}t"
Apply linearity:
"-2{\\displaystyle\\int}t\\mathrm{e}^{-t}\\,\\mathrm{d}t"
Now solving:
"{\\displaystyle\\int}t\\mathrm{e}^{-t}\\,\\mathrm{d}t"
Integrate by parts:
"{\\int}\\mathtt{f}\\mathtt{g}' = \\mathtt{f}\\mathtt{g} - {\\int}\\mathtt{f}'\\mathtt{g}"
"f\n=\nt\n,\t\ng\n\u2032\n=\ne\n^{\u2212\nt}\\\\\n\u2193\n steps\t\t\n\\\\\nf\n\u2032\n=\n1\n,\t\ng\n=\n\u2212\ne\n^{\u2212\nt}\n:"
"=-t\\mathrm{e}^{-t}-{\\displaystyle\\int}-\\mathrm{e}^{-t}\\,\\mathrm{d}t"
Now solving:
"{\\displaystyle\\int}-\\mathrm{e}^{-t}\\,\\mathrm{d}t"
"Substitute \\space \nu\n=\n\u2212\nt\n \n\u27f6\n \\frac{\nd\nu}\n{d\nt}\n=\n\u2212\n1\n (steps) \n\u27f6\n \nd\nt\n=\n\u2212\nd\nu\n:"
"={\\displaystyle\\int}\\mathrm{e}^u\\,\\mathrm{d}u"
on solving
"=\\mathrm{e}^{-t}"
Plug in solved integrals:
"-t\\mathrm{e}^{-t}-{\\displaystyle\\int}-\\mathrm{e}^{-t}\\,\\mathrm{d}t"
"=-t\\mathrm{e}^{-t}-\\mathrm{e}^{-t}"
Plug in solved integrals:
"-2{\\displaystyle\\int}t\\mathrm{e}^{-t}\\,\\mathrm{d}t"
"=2t\\mathrm{e}^{-t}+2\\mathrm{e}^{-t}"
Plug in solved integrals:
"-t^2\\mathrm{e}^{-t}-{\\displaystyle\\int}-2t\\mathrm{e}^{-t}\\,\\mathrm{d}t"
"=-t^2\\mathrm{e}^{-t}-2t\\mathrm{e}^{-t}-2\\mathrm{e}^{-t}"
Plug in solved integrals:
"-{\\displaystyle\\int}t^2\\mathrm{e}^{-t}\\,\\mathrm{d}t"
"=t^2\\mathrm{e}^{-t}+2t\\mathrm{e}^{-t}+2\\mathrm{e}^{-t}"
The problem is solved:
"{\\displaystyle\\int}-t^2\\mathrm{e}^{-t}\\,\\mathrm{d}t"
"=\\left(t^2+2t+2\\right)\\mathrm{e}^{-t}+C"
After solving integral , we got
"\\implies" "\\boxed{t^2+2t+2\\over e^t}" limit 0 to "\\infin"
When we put limits
And solve
"\\bigstar"
Limit t"_{\\rightarrow \\infin}" ["t^2+2t+2\\over e^t" ]
Limit is "\\infin\\over\\infin"
To solve this
We use L hospital rule , and
"\\bigstar"
We will get the value , answer is
"0"
Comments
Leave a comment