solve dx/(x-y)y^2 = dy/(y-x)x^2 = dz/x^2+y^2
The question is
"\\bigstar"
"dx\\over { ((x-y)y^2) }" ="dy\\over((y-x)x^2)" = "dz\\over(x^2+y^2)"
Consider these
"dx\\over { ((x-y)y^2) }" ="dy\\over((y-x)x^2)"
We get
Integration of
"\\bull"
"\\boxed{\\int y^2dy = \\int -x^2dx}"
"\\bull"
"\\boxed{y^3 = -x^3+c1}"
"\\bigstar"
"{dx\\over ((x-y)y^2)}={dz\\over(x^2+y^2)}"
"\\implies"
"\\boxed{ \\int {y^2} dz= \\int {(x^2+y^2)\\over (x-y) }dx }"
"\\implies"
"\\boxed{\u222b {(x^2+y^2)\\over (x-y) }dx}" ="\\boxed{\u222b {2y^2\\over(x-y)+x+y)}dx}" =
"\\boxed{2y^2\\intop{1\\over(x-y)}dx +\\intop x dx + y \\intop 1 dx}="
= "\\boxed{2 y^2 ln(x-y) + {x^2\\over{2 }}+ xy + c_2}"
"\\bull"
"\\bigstar"
"\\boxed{y^2ln(z) = 2 y^2 ln(x-y) + {x^2\\over{2 }}+ xy + c_2\n\n}"
integral surface:
"\\bull"
"\\boxed{ y^3 = -x^3+c_1 }"
"\\bull"
"\\boxed{y^2ln(z) = 2 y^2 ln(x-y) + {x^2\\over{2 }}+ xy + c_2\n\n}"
Comments
Leave a comment