Question #179739

(x2 + y2)dx + x(x − 2y)dy = 0


1
Expert's answer
2021-04-29T17:58:47-0400

(x²+ y²)dx + x(x − 2y)dy = 0

=> dydx=x2+y22xyx2\frac{dy}{dx}=\frac{x^2+y^2}{2xy-x²}

This is a homogeneous differential equation

Let us put y = vx and so dydx=v+xdvdx\frac{dy}{dx}=v+ x\frac{dv}{dx}

The equation transforms to

v+xdvdxv+ x\frac{dv}{dx} = x2+v2x22vx2x2\frac{x^2+v^2x^2}{2vx^2-x²}

=> v+xdvdxv+ x\frac{dv}{dx} = 1+v22v1\frac{1+v^2}{2v-1}

=> xdvdxx\frac{dv}{dx} = 1+v22v1v\frac{1+v^2}{2v-1} - v

=> xdvdxx\frac{dv}{dx} = 1+vv22v1\frac{1+v-v^2}{2v-1}

=> 2v11+vv2dv\frac{2v-1} {1+v-v^2} dv = dxx\frac{dx} {x}

=> 2v1v2v1dv\frac{2v-1} {v^2-v-1} dv = dxx-\frac{dx} {x}

=> 2v1v2v1dv=\int\frac{2v-1} {v^2-v-1} dv = dxx-\int\frac{dx} {x} +ln|C|

=> ln|v²-v-1} = - ln|x| + ln|C| [since f(x)f(x)dx=lnf(x)]\int\frac{f'(x)}{f(x)} dx = ln f(x)]

=> ln|v²-v-1| + ln|x| = ln|C|

=> ln|v²x-vx-x} = ln|C|

=> lny2xyx=lnCln| \frac{y²}{x} -y -x| = ln|C|

=> lny2xyx2x=lnCln| \frac{y²-xy -x²}{x}| = ln|C|

=> y2xyx2x=C| \frac{y²-xy -x²}{x}| = |C|

=> (y2xyx2)2=C2x2(y²-xy -x²)²= C²x²



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS