(x2 + y2)dx + x(x − 2y)dy = 0
(x²+ y²)dx + x(x − 2y)dy = 0
=> "\\frac{dy}{dx}=\\frac{x^2+y^2}{2xy-x\u00b2}"
This is a homogeneous differential equation
Let us put y = vx and so "\\frac{dy}{dx}=v+ x\\frac{dv}{dx}"
The equation transforms to
"v+ x\\frac{dv}{dx}" = "\\frac{x^2+v^2x^2}{2vx^2-x\u00b2}"
=> "v+ x\\frac{dv}{dx}" = "\\frac{1+v^2}{2v-1}"
=> "x\\frac{dv}{dx}" = "\\frac{1+v^2}{2v-1} - v"
=> "x\\frac{dv}{dx}" = "\\frac{1+v-v^2}{2v-1}"
=> "\\frac{2v-1} {1+v-v^2} dv" = "\\frac{dx} {x}"
=> "\\frac{2v-1} {v^2-v-1} dv" = "-\\frac{dx} {x}"
=> "\\int\\frac{2v-1} {v^2-v-1} dv =" "-\\int\\frac{dx} {x}" +ln|C|
=> ln|v²-v-1} = - ln|x| + ln|C| [since "\\int\\frac{f'(x)}{f(x)} dx = ln f(x)]"
=> ln|v²-v-1| + ln|x| = ln|C|
=> ln|v²x-vx-x} = ln|C|
=> "ln| \\frac{y\u00b2}{x} -y -x| = ln|C|"
=> "ln| \\frac{y\u00b2-xy -x\u00b2}{x}| = ln|C|"
=> "| \\frac{y\u00b2-xy -x\u00b2}{x}| = |C|"
=> "(y\u00b2-xy -x\u00b2)\u00b2= C\u00b2x\u00b2"
Comments
Leave a comment