(x²+ y²)dx + x(x − 2y)dy = 0
=> dxdy=2xy−x2x2+y2
This is a homogeneous differential equation
Let us put y = vx and so dxdy=v+xdxdv
The equation transforms to
v+xdxdv = 2vx2−x2x2+v2x2
=> v+xdxdv = 2v−11+v2
=> xdxdv = 2v−11+v2−v
=> xdxdv = 2v−11+v−v2
=> 1+v−v22v−1dv = xdx
=> v2−v−12v−1dv = −xdx
=> ∫v2−v−12v−1dv= −∫xdx +ln|C|
=> ln|v²-v-1} = - ln|x| + ln|C| [since ∫f(x)f′(x)dx=lnf(x)]
=> ln|v²-v-1| + ln|x| = ln|C|
=> ln|v²x-vx-x} = ln|C|
=> ln∣xy2−y−x∣=ln∣C∣
=> ln∣xy2−xy−x2∣=ln∣C∣
=> ∣xy2−xy−x2∣=∣C∣
=> (y2−xy−x2)2=C2x2
Comments