y''+4y=cos^2(x)
Given: "y{}''+4y=cos^2x"
Require to solve the given differential equation.
Auxiliary equation corresponding to the given homogeneous differential equation "y{}''+4y=0"
is "m^2+4=0"
Solve the equation "m^2+4=0"
Now "m^2+4=0\\Rightarrow m=\\pm 2i"
General solution to the homogeneous differential equation is
"y_h=c_1cos2x+c_2sin2x"
Now let us find the particular solution.
Use the method of variation of parameters to find the particular solution.
Using the method of variation of parameters, Particular solution is "y_p=Au+Bv,=cos2x,v=sin2x" and
"A=-\\int \\frac{vg(x)}{uv{}'-vu{}'}dx,B=\\int \\frac{ug(x)}{uv{}'-vu{}'}dx" , where "g(x)=cos^2x"
First let us find "uv{}'-vu{}'"
Now "u=cos2x,v=sin2x\\Rightarrow uv{}'-vu{}'=(cos2x)(2cos2x)-(sin2x)(-2sin2x)=2cos^2{2x}+2sin^2{2x}=2(1)=2"
Using the above, we get
"A=-\\int \\frac{vg(x)}{uv{}'-vu{}'}dx\\Rightarrow A=-\\int \\frac{(sin2x)(cos^2x)}{2}dx=-\\int \\frac{(2sinxcosx)(cos^2x)}{2}dx"
"\\Rightarrow A=-\\int t^3(-dt),t=cosx\\Rightarrow dt=-sinxdx"
Then, we get "A=-\\frac{t^4}{4}=-\\frac{cos^4x}{4}"
And
"B=\\int \\frac{ug(x)}{uv{}'-vu{}'}dx\\Rightarrow B=\\int \\frac{(cos2x)(cos^2x)}{2}dx"
"\\Rightarrow B=\\frac{1}{2}\\int(cos2x)\\left [ \\frac{1+cos2x}{2} \\right ]dx"
"\\Rightarrow B=\\frac{1}{4}\\int(cos2x)dx+\\frac{1}{4}\\int cos^2{2x}dx"
"\\Rightarrow B=\\frac{1}{4}\\int(cos2x)dx+\\frac{1}{4}\\int \\frac{1+cos4x}{2}dx"
"\\Rightarrow B=\\frac{1}{4}\\left [ \\frac{sin2x}{2} \\right ]+\\frac{1}{8}\\left [ x+\\frac{sin4x}{4} \\right ]"
"\\Rightarrow B=\\frac{1}{8}sin2x+\\frac{x}{8}+\\frac{sin4x}{32}"
Using the above, we have
"y_p=-\\frac{1}{4}(cos^4x)(cos2x)+\\left [ \\frac{1}{8}sin2x+\\frac{x}{8}+\\frac{sin4x}{32} \\right ](sin2x)"
Therefore general solution is
"y=y_h+y_p"
"y=c_1cos2x+c_2sin2x-\\frac{1}{4}(cos^4x)(cos2x)+\\left [ \\frac{1}{8}sin2x+\\frac{x}{8}+\\frac{sin4x}{32} \\right ](sin2x)"
Comments
Leave a comment