Question #179250

(x+y-4)dx-(3x-y-4)dy=0 when x=4 and y=7.


1
Expert's answer
2021-04-15T07:27:05-0400

(x+y-4)dx-(3x-y-4)dy=0 

dydx=x+y43xy4\frac{dy}{dx} = \frac{x+y-4}{3x-y-4}

Let x = u+h and. y = v+k

x+y43xy4\frac{x+y-4}{3x-y-4} = u+h+v+k43u+3hvk4=u+v+h+k43uv+3hk4\frac{u+h+v+k-4}{3u+3h-v-k-4}=\frac{u+v+h+k-4}{3u-v+3h-k-4}

To make it homogeneous put

h+k-4=0 and 3h-k-4=0

Adding we get 4h = 8=> h = 2

So k = 2

So x = u+2 and y = v+2

dx = du and dy = dv

So dydx=dvdu\frac{dy}{dx} = \frac{dv}{du}

Now the given differential equation transforms to

dvdu=u+v3uv\frac{dv}{du} = \frac{u+v}{3u-v}

Let v = tu

dvdu=t+udtdu\frac{dv}{du} = t + u \frac{dt}{du}

=> t+udtdu=t + u \frac{dt}{du} = u+tu3utu\frac{u+tu}{3u-tu}

=> udtdu=u \frac{dt}{du} = 1+t3tt\frac{1+t}{3-t}-t

=> udtdu=u \frac{dt}{du} = 12t+t23t\frac{1-2t+t²}{3-t}

=> 3t(t1)2dt=duu\frac{3-t}{(t-1)²} dt = \frac{du}{u}

=> 2(t1)(t1)2dt=duu\frac{2-(t-1)}{(t-1)²} dt = \frac{du}{u}

=> 2(t1)2dt1(t1)dt=duu\frac{2}{(t-1)²} dt -\frac{1}{(t-1)} dt=\frac{du}{u}

=> 2(t1)2dt1(t1)dt=duu\int\frac{2}{(t-1)²} dt -\int\frac{1}{(t-1)} dt=\int\frac{du}{u}

=> 2t1lnt1=lnulnC-\frac{2}{t-1} - ln|t-1|=ln|u| - lnC

=> 2t1=lnu(t1)C-\frac{2}{t-1} = ln|\frac{u(t-1)}{C}|

=> 2uvu=ln(vu)C-\frac{2u}{v-u} = ln|\frac{(v-u)}{C}|

=> 2(x2)yx=ln(yx)C-\frac{2(x-2)}{y-x} = ln|\frac{(y-x)}{C}|

=> (yx)C=\frac{(y-x)}{C}= e2(x2)yxe^{-\frac{2(x-2)}{y-x} }

=> y = x + Ce2(x2)yxCe^{-\frac{2(x-2)}{y-x} } , This is the general solution.

Now y = 7 when x = 4

So 7 = 4 + Ce2(42)74Ce^{-\frac{2(4-2)}{7-4} }

=> C = 3e43e^{\frac{4}{3} }

So the solution is

y = x +e43.e2(x2)yx+e^{\frac{4}{3}}.e^{-\frac{2(x-2)}{y-x} }



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS