(x+y-4)dx-(3x-y-4)dy=0 when x=4 and y=7.
(x+y-4)dx-(3x-y-4)dy=0
"\\frac{dy}{dx} = \\frac{x+y-4}{3x-y-4}"
Let x = u+h and. y = v+k
"\\frac{x+y-4}{3x-y-4}" = "\\frac{u+h+v+k-4}{3u+3h-v-k-4}=\\frac{u+v+h+k-4}{3u-v+3h-k-4}"
To make it homogeneous put
h+k-4=0 and 3h-k-4=0
Adding we get 4h = 8=> h = 2
So k = 2
So x = u+2 and y = v+2
dx = du and dy = dv
So "\\frac{dy}{dx} = \\frac{dv}{du}"
Now the given differential equation transforms to
"\\frac{dv}{du} = \\frac{u+v}{3u-v}"
Let v = tu
"\\frac{dv}{du} = t + u \\frac{dt}{du}"
=> "t + u \\frac{dt}{du} =" "\\frac{u+tu}{3u-tu}"
=> "u \\frac{dt}{du} =" "\\frac{1+t}{3-t}-t"
=> "u \\frac{dt}{du} =" "\\frac{1-2t+t\u00b2}{3-t}"
=> "\\frac{3-t}{(t-1)\u00b2} dt = \\frac{du}{u}"
=> "\\frac{2-(t-1)}{(t-1)\u00b2} dt = \\frac{du}{u}"
=> "\\frac{2}{(t-1)\u00b2} dt -\\frac{1}{(t-1)} dt=\\frac{du}{u}"
=> "\\int\\frac{2}{(t-1)\u00b2} dt -\\int\\frac{1}{(t-1)} dt=\\int\\frac{du}{u}"
=> "-\\frac{2}{t-1} - ln|t-1|=ln|u| - lnC"
=> "-\\frac{2}{t-1} = ln|\\frac{u(t-1)}{C}|"
=> "-\\frac{2u}{v-u} = ln|\\frac{(v-u)}{C}|"
=> "-\\frac{2(x-2)}{y-x} = ln|\\frac{(y-x)}{C}|"
=> "\\frac{(y-x)}{C}=" "e^{-\\frac{2(x-2)}{y-x} }"
=> y = x + "Ce^{-\\frac{2(x-2)}{y-x} }" , This is the general solution.
Now y = 7 when x = 4
So 7 = 4 + "Ce^{-\\frac{2(4-2)}{7-4} }"
=> C = 3"e^{\\frac{4}{3} }"
So the solution is
y = x "+e^{\\frac{4}{3}}.e^{-\\frac{2(x-2)}{y-x} }"
Comments
Leave a comment