(x+y-4)dx-(3x-y-4)dy=0
dxdy=3x−y−4x+y−4
Let x = u+h and. y = v+k
3x−y−4x+y−4 = 3u+3h−v−k−4u+h+v+k−4=3u−v+3h−k−4u+v+h+k−4
To make it homogeneous put
h+k-4=0 and 3h-k-4=0
Adding we get 4h = 8=> h = 2
So k = 2
So x = u+2 and y = v+2
dx = du and dy = dv
So dxdy=dudv
Now the given differential equation transforms to
dudv=3u−vu+v
Let v = tu
dudv=t+ududt
=> t+ududt= 3u−tuu+tu
=> ududt= 3−t1+t−t
=> ududt= 3−t1−2t+t2
=> (t−1)23−tdt=udu
=> (t−1)22−(t−1)dt=udu
=> (t−1)22dt−(t−1)1dt=udu
=> ∫(t−1)22dt−∫(t−1)1dt=∫udu
=> −t−12−ln∣t−1∣=ln∣u∣−lnC
=> −t−12=ln∣Cu(t−1)∣
=> −v−u2u=ln∣C(v−u)∣
=> −y−x2(x−2)=ln∣C(y−x)∣
=> C(y−x)= e−y−x2(x−2)
=> y = x + Ce−y−x2(x−2) , This is the general solution.
Now y = 7 when x = 4
So 7 = 4 + Ce−7−42(4−2)
=> C = 3e34
So the solution is
y = x +e34.e−y−x2(x−2)
Comments