1/xy2+y4 is an integral factor of the differential equation(x2y+y2)dx+(y3-z3)dy=0 true or false
Given equation,
"(x^2y+y^2)dx+(y^3-x^3)dy=0"
Here, "M=x^2y+y^2, N=y^3-x^3"
Hence Integrating factor "I.F.=\\dfrac{1}{Mx+Ny}=\\dfrac{1}{x^3y+xy^2+y^4-x^3y}"
"=\\dfrac{1}{xy^2+y^4}"
Hence "\\dfrac{1}{xy^2+y^4}" is an integrating factor of given equation.
Comments
Leave a comment