Solve -y''-2y'+2y = e-2x
y(0)=1
y(infinity )=0
"-y''-2y'+2y=e^{-2x}"
"y(0)=1"
"y(\\infty)=0"
Solution:
"y''+2y'-2y=-e^{-2x}"
Characteristic equation:
"r^2+2r-2=0" ;
"D=\\sqrt{4+4\\cdot 2}=2\\sqrt3" ;
"r_1=-1+\\sqrt3" ; "r_2=-1-\\sqrt3" .
The general solution of the homogeneous differential equation:
"y_0=C_1e^{(-1+\\sqrt3)x}+C_2e^{(-1-\\sqrt3)x}"
Let's find a partial solution of the non-homogeneous equation in the form
"y_p=Ae^{-2x}"
"y_p'=-2Ae^{-2x}"
"y_p''=4Ae^{-2x}"
Substitute "y_p", "y_p'", "y_p''" into the origin differential equation:
"4Ae^{-2x}-4Ae^{-2x}-2Ae^{-2x}=-e^{-2x}"
"A=\\frac12"
The general solution of the non-homogeneous differential equation:
"y=y_0+y_p=C_1e^{(-1+\\sqrt3)x}+C_2e^{(-1-\\sqrt3)x}+\\frac12e^{-2x}"
Let's apply conditions:
"y(0)=C_1+C_2+\\frac12=1"
"y(\\infty)=0\\implies" "C_1=0" (because if "C_1\\neq0" then "y(\\infty)\\to\\infty" )
"C_2=\\frac12"
Answer: "y=\\frac12e^{(-1-\\sqrt3)x}+\\frac12e^{-2x}" .
Comments
Leave a comment