Given,
(D3−3D2−6D+8)y=xe−3x
Its auxilary equation is-
m3−3m2−6m+8=0
m3−m2−2m2+2m−8m+8=0m2(m−1)−2m(m−1)−8(m−1)=0(m−1)(m2−2m−8)=0
The roots of the equation is-
m=1,4,−2
Complimentary function is-
C.F.=c1ex+c2e4x+c3e−2x
Particular integral
P.I.=D3−3D2−6D+8e−3xx
=(D−3)2−3(D−2)2−6(D−1)+8e−3xx
=D3−12D2+33D−25e−3xx
=−25(1−(25D3−12D2+33D))e−3xx
=−25e−3x(1−25D3−12D2+33D)x
=25−e−3x(x−2533)
=25−e−3x(x−2533)
Complete solution is-
y=c1ex+c2e4x+c3e−2x−25e−3x(x−2533)
Comments