Question #177986

(D3 − 3D2 − 6D + 8)y = xe−3x


1
Expert's answer
2021-04-20T16:37:03-0400

Given,

(D33D26D+8)y=xe3x(D^3 − 3D^2 − 6D + 8)y = xe^{−3x}


Its auxilary equation is-


m33m26m+8=0m^3-3m^2-6m+8=0


m3m22m2+2m8m+8=0m2(m1)2m(m1)8(m1)=0(m1)(m22m8)=0m^3-m^2-2m^2+2m-8m+8=0\\ m^2(m-1)-2m(m-1)-8(m-1)=0\\ (m-1)(m^2-2m-8)=0


The roots of the equation is-

m=1,4,2m=1,4,-2


Complimentary function is-

C.F.=c1ex+c2e4x+c3e2xC.F.=c_1e^x+c_2e^{4x}+c_3e^{-2x}


Particular integral

P.I.=e3xxD33D26D+8P.I.=\dfrac{e^{-3x}x}{D^3-3D^2-6D+8}


=e3xx(D3)23(D2)26(D1)+8=\dfrac{e^{-3x}x}{(D-3)^2-3(D-2)^2-6(D-1)+8}


=e3xxD312D2+33D25=\dfrac{e^{-3x}x}{D^3-12D^2+33D-25}


=e3xx25(1(D312D2+33D)25)=\dfrac{e^{-3x}x}{-25(1-(\dfrac{D^3-12D^2+33D)}{25})}


=e3x25(1D312D2+33D25)x=\dfrac{e^{-3x}}{-25}(1-\dfrac{D^3-12D^2+33D}{25})x


=e3x25(x3325)=\dfrac{-e^{-3x}}{25}(x-\dfrac{33}{25})


=e3x25(x3325)=\dfrac{-e^{-3x}}{25}(x-\dfrac{33}{25})


Complete solution is-


y=c1ex+c2e4x+c3e2xe3x25(x3325)y=c_1e^x+c_2e^{4x}+c_3e^{-2x}-\dfrac{e^{-3x}}{25}(x-\dfrac{33}{25})



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS