(D3 − 3D2 − 6D + 8)y = xe−3x
Given,
"(D^3 \u2212 3D^2 \u2212 6D + 8)y = xe^{\u22123x}"
Its auxilary equation is-
"m^3-3m^2-6m+8=0"
"m^3-m^2-2m^2+2m-8m+8=0\\\\\n\nm^2(m-1)-2m(m-1)-8(m-1)=0\\\\\n\n(m-1)(m^2-2m-8)=0"
The roots of the equation is-
"m=1,4,-2"
Complimentary function is-
"C.F.=c_1e^x+c_2e^{4x}+c_3e^{-2x}"
Particular integral
"P.I.=\\dfrac{e^{-3x}x}{D^3-3D^2-6D+8}"
"=\\dfrac{e^{-3x}x}{(D-3)^2-3(D-2)^2-6(D-1)+8}"
"=\\dfrac{e^{-3x}x}{D^3-12D^2+33D-25}"
"=\\dfrac{e^{-3x}x}{-25(1-(\\dfrac{D^3-12D^2+33D)}{25})}"
"=\\dfrac{e^{-3x}}{-25}(1-\\dfrac{D^3-12D^2+33D}{25})x"
"=\\dfrac{-e^{-3x}}{25}(x-\\dfrac{33}{25})"
"=\\dfrac{-e^{-3x}}{25}(x-\\dfrac{33}{25})"
Complete solution is-
"y=c_1e^x+c_2e^{4x}+c_3e^{-2x}-\\dfrac{e^{-3x}}{25}(x-\\dfrac{33}{25})"
Comments
Leave a comment