Solve by finding an integrating factor
(x^2+y^2+2x)dx + 2ydy =0
Solution
given the differential equation:
"(x^2+y^2+2x)dx+2ydy=0" ...(1)
let "f(x,y)=x^2+y^2+2x"
"\\implies g(y)=2y"
so
f'"_y(x,y)=2y"
"g'(x)=0"
using Integration factor method,
"\\frac{du}{dx}=\\frac{(f_y-g_x)u}{g}"
"\\frac{du}{dx}=\\frac{(2y-0)u}{2y}"
"\\frac{du}{dx}=\\frac{(2y)u}{2y}"
"\\frac{du}{dx}=u"
on solving we get integrated factor
Multiply equation 1 by integrated factor
"e^x(x^2+y^2+2x)dx+2ye^xdy=0"
let M="(x^2+y^2+2x)e^x"
N="2ye^x"
"\\frac{dM}{dy}=2ye^x"
"\\frac{dN}{dx}=2ye^x"
Hence "\\frac{dM}{dy}=\\frac{dN}{dx}"
Solution of above equation is given by,
Let I(x,y) be a implict function
I(x,y)="\\int M(x,y)dx"
="\\int e^x(x^2+y^2+2x)dx"
="x^2e^x-2xe^x+2e^x+y^2e^x+2xe^x-2e^x"
="x^2e^x+y^2e^x" +f(y)
Let differentiate I(x,y) with respect to y
"\\frac{dI}{dy}=" N(x,y)
"2ye^x+\\frac{df}{dy}=2ye^x"
"\\frac{df}{dy}=0\n=constant"
I(x,y)="x^2e^x+y^2e^x+c"
at "x=y=1"
"0=e+e+c\\\\\n\nc+2e=0\\\\\n\nc=-2e"
hence this is the required solution is;
"x^2e^x+y^2e^x-2e=0"
"x^2+y^2=2e^{1-x}" .
Comments
Leave a comment