solve the differential equation dy/dx +(x/1-x^2)y=xy^1/2 , y(0)=1
"y'+\\dfrac{x}{1-x^2}y-x\\sqrt{y}=0"
Let "y=u*v"
"u'v+v'u+\\dfrac{x}{1-x^2}uv-x\\sqrt{uv}=0"
"v(u'+\\dfrac{x}{1-x^2}u)+v'u-x\\sqrt{uv}=0"
Let first part equal to 0. Then:
"\\begin{cases}\nu'+\\dfrac{x}{1-x^2}u=0\\\\\nv'u-x\\sqrt{uv}=0\n\\end{cases}"
"\\begin{cases}\nu'=-\\dfrac{x}{1-x^2}u\\\\\nv'u=x\\sqrt{uv}\n\\end{cases}"
"\\begin{cases}\n\\dfrac{du}{u}=-\\dfrac{xdx}{1-x^2}\\\\\n\\dfrac{dv}{dx}u=x\\sqrt{uv}\n\\end{cases}"
"\\begin{cases}\n\\ln{u}=\\ln{\\dfrac{1}{\\sqrt{1-x^2}}}\\\\\n\\dfrac{dv}{\\sqrt{v}}=\\dfrac{xdx}{\\sqrt{u}}\n\\end{cases}"
"\\begin{cases}\nu=\\dfrac{1}{\\sqrt{1-x^2}}\\\\\n\\dfrac{dv}{\\sqrt{v}}=x\\sqrt[4]{1-x^2}dx\n\\end{cases}"
"\\begin{cases}\nu=\\dfrac{1}{\\sqrt{1-x^2}}\\\\\n2\\sqrt{v}=-\\dfrac{2}{5}(1-x^2)^{5\/4}+C\n\\end{cases}"
"\\begin{cases}\nu=\\dfrac{1}{\\sqrt{1-x^2}}\\\\\n2\\sqrt{v}=-\\dfrac{2}{5}(1-x^2)^{5\/4}+C\n\\end{cases}"
"\\begin{cases}\nu=\\dfrac{1}{\\sqrt{1-x^2}}\\\\\nv=(\\dfrac{1}{5}(1-x^2)^{5\/4}-\\dfrac{C}{2})^2\n\\end{cases}"
"y=\\dfrac{1}{\\sqrt{1-x^2}}*(\\dfrac{1}{5}(1-x^2)^{5\/4}-\\dfrac{C}{2})^2"
"y(0)=1=>\\\\\n1=\\dfrac{1}{\\sqrt{1-0^2}}*(\\dfrac{1}{5}(1-0^2)^{5\/4}-\\dfrac{C}{2})^2"
"1=\\dfrac{1}{\\sqrt{1}}*(\\dfrac{1}{5}(1)^{5\/4}-\\dfrac{C}{2})^2\\\\\n1=(\\dfrac{1}{5}-\\dfrac{C}{2})^2=>\\\\\nC=-\\dfrac{8}{5} \\space or\\space \u0421=\\dfrac{12}{5}"
"y_1=\\dfrac{1}{25\\sqrt{1-x^2}}*((1-x^2)^{5\/4}+4)^2\\\\\ny_2=\\dfrac{1}{25\\sqrt{1-x^2}}*((1-x^2)^{5\/4}-6)^2"
Comments
Leave a comment