Answer to Question #177502 in Differential Equations for utkarsh

Question #177502

solve the differential equation dy/dx +(x/1-x^2)y=xy^1/2 , y(0)=1


1
Expert's answer
2021-04-13T09:40:15-0400

y+x1x2yxy=0y'+\dfrac{x}{1-x^2}y-x\sqrt{y}=0

Let y=uvy=u*v

uv+vu+x1x2uvxuv=0u'v+v'u+\dfrac{x}{1-x^2}uv-x\sqrt{uv}=0

v(u+x1x2u)+vuxuv=0v(u'+\dfrac{x}{1-x^2}u)+v'u-x\sqrt{uv}=0

Let first part equal to 0. Then:

{u+x1x2u=0vuxuv=0\begin{cases} u'+\dfrac{x}{1-x^2}u=0\\ v'u-x\sqrt{uv}=0 \end{cases}

{u=x1x2uvu=xuv\begin{cases} u'=-\dfrac{x}{1-x^2}u\\ v'u=x\sqrt{uv} \end{cases}

{duu=xdx1x2dvdxu=xuv\begin{cases} \dfrac{du}{u}=-\dfrac{xdx}{1-x^2}\\ \dfrac{dv}{dx}u=x\sqrt{uv} \end{cases}

{lnu=ln11x2dvv=xdxu\begin{cases} \ln{u}=\ln{\dfrac{1}{\sqrt{1-x^2}}}\\ \dfrac{dv}{\sqrt{v}}=\dfrac{xdx}{\sqrt{u}} \end{cases}

{u=11x2dvv=x1x24dx\begin{cases} u=\dfrac{1}{\sqrt{1-x^2}}\\ \dfrac{dv}{\sqrt{v}}=x\sqrt[4]{1-x^2}dx \end{cases}

{u=11x22v=25(1x2)5/4+C\begin{cases} u=\dfrac{1}{\sqrt{1-x^2}}\\ 2\sqrt{v}=-\dfrac{2}{5}(1-x^2)^{5/4}+C \end{cases}

{u=11x22v=25(1x2)5/4+C\begin{cases} u=\dfrac{1}{\sqrt{1-x^2}}\\ 2\sqrt{v}=-\dfrac{2}{5}(1-x^2)^{5/4}+C \end{cases}

{u=11x2v=(15(1x2)5/4C2)2\begin{cases} u=\dfrac{1}{\sqrt{1-x^2}}\\ v=(\dfrac{1}{5}(1-x^2)^{5/4}-\dfrac{C}{2})^2 \end{cases}

y=11x2(15(1x2)5/4C2)2y=\dfrac{1}{\sqrt{1-x^2}}*(\dfrac{1}{5}(1-x^2)^{5/4}-\dfrac{C}{2})^2

y(0)=1=>1=1102(15(102)5/4C2)2y(0)=1=>\\ 1=\dfrac{1}{\sqrt{1-0^2}}*(\dfrac{1}{5}(1-0^2)^{5/4}-\dfrac{C}{2})^2

1=11(15(1)5/4C2)21=(15C2)2=>C=85 or С=1251=\dfrac{1}{\sqrt{1}}*(\dfrac{1}{5}(1)^{5/4}-\dfrac{C}{2})^2\\ 1=(\dfrac{1}{5}-\dfrac{C}{2})^2=>\\ C=-\dfrac{8}{5} \space or\space С=\dfrac{12}{5}

y1=1251x2((1x2)5/4+4)2y2=1251x2((1x2)5/46)2y_1=\dfrac{1}{25\sqrt{1-x^2}}*((1-x^2)^{5/4}+4)^2\\ y_2=\dfrac{1}{25\sqrt{1-x^2}}*((1-x^2)^{5/4}-6)^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment