y′+1−x2xy−xy=0
Let y=u∗v
u′v+v′u+1−x2xuv−xuv=0
v(u′+1−x2xu)+v′u−xuv=0
Let first part equal to 0. Then:
{u′+1−x2xu=0v′u−xuv=0
{u′=−1−x2xuv′u=xuv
⎩⎨⎧udu=−1−x2xdxdxdvu=xuv
⎩⎨⎧lnu=ln1−x21vdv=uxdx
⎩⎨⎧u=1−x21vdv=x41−x2dx
⎩⎨⎧u=1−x212v=−52(1−x2)5/4+C
⎩⎨⎧u=1−x212v=−52(1−x2)5/4+C
⎩⎨⎧u=1−x21v=(51(1−x2)5/4−2C)2
y=1−x21∗(51(1−x2)5/4−2C)2
y(0)=1=>1=1−021∗(51(1−02)5/4−2C)2
1=11∗(51(1)5/4−2C)21=(51−2C)2=>C=−58 or С=512
y1=251−x21∗((1−x2)5/4+4)2y2=251−x21∗((1−x2)5/4−6)2
Comments
Leave a comment