y' + 3y = e5t, y(0) = 2
Taking Laplace transform on both sides
L(y′)+3L(y)=L(e5t)
sY(s)−y(0)+3Y(s)=(s−5)1
sY(s)−2+3Y(s)=(s−5)1
Y(s)(s+3)−2=(s−5)1
Y(s)=(s+3)2+(s+3)(s−5)1
Y(s)=(s+3)(s−5)(2s−9)
Resolving into partial fraction we get,
(s+3)(s−5)(2s−9)=(s+3)A+(s−5)B
(2s−9)=A(s−5)+B(s+3)
We get, A=815
B=81
Hence, we get
Y(s)=8(s+3)15+8(s−5)1
Now, taking the inverse Laplace Transform
We get,
y(t)=815(e−3t)+8e5t
Comments