Use the Laplace transform to solve the given initial-value problem.
y' + 3y = e5t,  y(0) = 2
y(t) =
y' + 3y = e5t,  y(0) = 2
Taking Laplace transform on both sides
"L(y')+3L(y) = L(e^{5t})"
"sY(s)-y(0)+3Y(s) = \\dfrac{1}{(s-5)}"
"sY(s)-2+3Y(s) = \\dfrac{1}{(s-5)}"
"Y(s)(s+3) - 2 = \\dfrac{1}{(s-5)}"
"Y(s) = \\dfrac{2}{(s+3)} + \\dfrac{1}{(s+3)(s-5)}"
"Y(s) = \\dfrac{(2s-9)}{(s+3)(s-5)}"
Resolving into partial fraction we get,
"\\dfrac{(2s-9)}{(s+3)(s-5)} = \\dfrac{A}{(s+3)} + \\dfrac{B}{(s-5)}"
"(2s-9) = A(s-5) + B(s+3)"
We get, "A = \\dfrac{15}{8}"
"B = \\dfrac{1}{8}"
Hence, we get
"Y(s) = \\dfrac{15}{8(s+3)} + \\dfrac{1}{8(s-5)}"
Now, taking the inverse Laplace Transform
We get,
"y(t) = \\dfrac{15(e^{-3t})}{8} + \\dfrac{e^{5t}}{8}"
Comments
Leave a comment