Use Definition 7.1.1.
DEFINITION 7.1.1Â Â Â Â Laplace Transform
Let f be a function defined for t ≥ 0.
 Then the integral
ℒ{f(t)} = ∞
e−stf(t) dt0
is said to be the Laplace transform of f, provided that the integral converges.
Find ℒ{f(t)}.
 (Write your answer as a function of s.)
f(t) = {t, 0 ≤ t < 1
{1,  t ≥ 1
"\u2112(f(t))=\\int_0^{\\infty}e^{-st}f(t) dt="
"=\\int_0^1e^{-st}t dt+\\int_1^{\\infty}e^{-st}dt"
"\\int_0^1e^{-st}tdt=-\\frac{1}{s}e^{-st}t|_0^1+\\int_0^1\\frac{e^{-st}}{s}dt="
"=-\\frac{1}{s}e^{-s}-\\frac{1}{s^2}e^{-st}|_0^1="
"=-\\frac{1}{s}e^{-s}-\\frac{1}{s^2}(e^{-s}-1)"
"\\int_1^{\\infty}e^{-st}dt=-\\frac{1}{s}e^{-st}|_1^{\\infty}=\\frac{1}{s}e^{-s}"
"\u2112(f(t))=-\\frac{1}{s}e^{-s}-\\frac{1}{s^2}(e^{-s}-1)+\\frac{1}{s}e^{-s}="
"=\\frac{1}{s^2}(1-e^{-s})"
Comments
Leave a comment