u ( x + y ) ∂ u ∂ x + u ( x − y ) ∂ u ∂ y = x 2 + y 2 v ( u , x , y ) = 0 ∂ v ∂ u ≠ 0 u ( x + y ) ∂ v ∂ x + u ( x − y ) ∂ v ∂ y + ( x 2 + y 2 ) ∂ v ∂ u = 0 d x u ( x + y ) = d y u ( x − y ) = d u x 2 + y 2 d x u ( x + y ) = d y u ( x − y ) y ′ = x − y x + y y ′ = 1 − 2 y x ⋅ 1 1 + y x z ( x ) = y x ; y = z ⋅ x ; y ′ = z ′ ⋅ x + z z ′ ⋅ x + z = 1 − 2 z ⋅ 1 1 + z z ′ ⋅ x + z + 2 z ⋅ 1 1 + z − 1 = 0 d z d x ⋅ x + z + 2 z ⋅ 1 1 + z − 1 = 0 x d z + z d x + 2 z ⋅ 1 1 + z d x − d x = 0 x d z + ( z + 2 z ⋅ 1 1 + z − 1 ) d x = 0 x d z + z 2 + 2 z − 1 z + 1 d x = 0 ∣ : x z 2 + 2 z − 1 z + 1 ≠ 0 ( z + 1 ) d z z 2 + 2 z − 1 + d x x = 0 1 2 ⋅ d ( z 2 + 2 z + 1 ) z 2 + 2 z − 1 + d x x = 0 1 2 ln ∣ z 2 + 2 z − 1 ∣ + ln ∣ x ∣ = ln C ln x z 2 + 2 z − 1 = ln C x z 2 + 2 z − 1 = C . d x u ( x + y ) = d y u ( x − y ) x d x − y d y u x ( x + y ) − u y ( x − y ) = d u x 2 + y 2 1 2 ⋅ d ( x 2 − y 2 ) u ( x 2 + y 2 ) = d u x 2 + y 2 1 2 ⋅ d ( x 2 − y 2 ) = u d u 1 2 ⋅ ( x 2 − y 2 ) − u 2 2 = C x 2 − y 2 − u 2 = C f ( x ( y / x ) 2 + 2 ( y / x ) − 1 , x 2 − y 2 − u 2 ) = 0 — general solution of our equation . u(x+y)\frac{\partial u}{\partial x}+u(x-y)\frac{\partial u}{\partial y}=x^2+y^2\\
v(u,x,y)=0\\
\frac{\partial v}{\partial u}\neq 0\\
u(x+y)\frac{\partial v}{\partial x}+u(x-y)\frac{\partial v}{\partial y}+(x^2+y^2)\frac{\partial v}{\partial u}=0\\
\frac{dx}{u(x+y)}=\frac{dy}{u(x-y)}=\frac{du}{x^2+y^2}\\
\frac{dx}{u(x+y)}=\frac{dy}{u(x-y)}\\
y^{\prime}=\frac{x-y}{x+y}\\
y^{\prime}=1-\frac{2y}{x}\cdot\frac{1}{1+\frac{y}{x}}\\
z(x)=\frac{y}{x};y=z\cdot x;y^{\prime}=z^{\prime}\cdot x+z\\
z^{\prime}\cdot x+z=1-2z\cdot\frac{1}{1+z}\\
z^{\prime}\cdot x+z+2z\cdot\frac{1}{1+z}-1=0\\
\frac{dz}{dx}\cdot x+z+2z\cdot\frac{1}{1+z}-1=0\\
xdz+zdx+2z\cdot\frac{1}{1+z}dx-dx=0\\
xdz+(z+2z\cdot\frac{1}{1+z}-1)dx=0\\
xdz+\frac{z^2+2z-1}{z+1}dx=0|:x\frac{z^2+2z-1}{z+1}\neq 0\\
\frac{(z+1)dz}{z^2+2z-1}+\frac{dx}{x}=0\\
\frac{1}{2}\cdot\frac{d(z^2+2z+1)}{z^2+2z-1}+\frac{dx}{x}=0\\
\frac{1}{2}\ln|z^2+2z-1|+\ln|x|=\ln C\\
\ln x\sqrt{z^2+2z-1}=\ln C\\
x\sqrt{z^2+2z-1}=C.\\
\frac{dx}{u(x+y)}=\frac{dy}{u(x-y)}\\\\
\frac{xdx-ydy}{ux(x+y)-uy(x-y)}=\frac{du}{x^2+y^2}\\
\frac{1}{2}\cdot\frac{d(x^2-y^2)}{u(x^2+y^2)}=\frac{du}{x^2+y^2}\\
\frac{1}{2}\cdot d(x^2-y^2)=udu\\
\frac{1}{2}\cdot (x^2-y^2)-\frac{u^2}{2}=C\\
x^2-y^2-u^2=C\\
f(x\sqrt{(y/x)^2+2(y/x)-1},\ x^2-y^2-u^2)=0\text{ --- general solution of our equation}. u ( x + y ) ∂ x ∂ u + u ( x − y ) ∂ y ∂ u = x 2 + y 2 v ( u , x , y ) = 0 ∂ u ∂ v = 0 u ( x + y ) ∂ x ∂ v + u ( x − y ) ∂ y ∂ v + ( x 2 + y 2 ) ∂ u ∂ v = 0 u ( x + y ) d x = u ( x − y ) d y = x 2 + y 2 d u u ( x + y ) d x = u ( x − y ) d y y ′ = x + y x − y y ′ = 1 − x 2 y ⋅ 1 + x y 1 z ( x ) = x y ; y = z ⋅ x ; y ′ = z ′ ⋅ x + z z ′ ⋅ x + z = 1 − 2 z ⋅ 1 + z 1 z ′ ⋅ x + z + 2 z ⋅ 1 + z 1 − 1 = 0 d x d z ⋅ x + z + 2 z ⋅ 1 + z 1 − 1 = 0 x d z + z d x + 2 z ⋅ 1 + z 1 d x − d x = 0 x d z + ( z + 2 z ⋅ 1 + z 1 − 1 ) d x = 0 x d z + z + 1 z 2 + 2 z − 1 d x = 0∣ : x z + 1 z 2 + 2 z − 1 = 0 z 2 + 2 z − 1 ( z + 1 ) d z + x d x = 0 2 1 ⋅ z 2 + 2 z − 1 d ( z 2 + 2 z + 1 ) + x d x = 0 2 1 ln ∣ z 2 + 2 z − 1∣ + ln ∣ x ∣ = ln C ln x z 2 + 2 z − 1 = ln C x z 2 + 2 z − 1 = C . u ( x + y ) d x = u ( x − y ) d y ux ( x + y ) − u y ( x − y ) x d x − y d y = x 2 + y 2 d u 2 1 ⋅ u ( x 2 + y 2 ) d ( x 2 − y 2 ) = x 2 + y 2 d u 2 1 ⋅ d ( x 2 − y 2 ) = u d u 2 1 ⋅ ( x 2 − y 2 ) − 2 u 2 = C x 2 − y 2 − u 2 = C f ( x ( y / x ) 2 + 2 ( y / x ) − 1 , x 2 − y 2 − u 2 ) = 0 — general solution of our equation .
Comments