Question #176450

U(x+y) Ux + U (x-y) Uy = x2 + y2

1
Expert's answer
2021-03-31T12:00:54-0400

u(x+y)ux+u(xy)uy=x2+y2v(u,x,y)=0vu0u(x+y)vx+u(xy)vy+(x2+y2)vu=0dxu(x+y)=dyu(xy)=dux2+y2dxu(x+y)=dyu(xy)y=xyx+yy=12yx11+yxz(x)=yx;y=zx;y=zx+zzx+z=12z11+zzx+z+2z11+z1=0dzdxx+z+2z11+z1=0xdz+zdx+2z11+zdxdx=0xdz+(z+2z11+z1)dx=0xdz+z2+2z1z+1dx=0:xz2+2z1z+10(z+1)dzz2+2z1+dxx=012d(z2+2z+1)z2+2z1+dxx=012lnz2+2z1+lnx=lnClnxz2+2z1=lnCxz2+2z1=C.dxu(x+y)=dyu(xy)xdxydyux(x+y)uy(xy)=dux2+y212d(x2y2)u(x2+y2)=dux2+y212d(x2y2)=udu12(x2y2)u22=Cx2y2u2=Cf(x(y/x)2+2(y/x)1, x2y2u2)=0 — general solution of our equation.u(x+y)\frac{\partial u}{\partial x}+u(x-y)\frac{\partial u}{\partial y}=x^2+y^2\\ v(u,x,y)=0\\ \frac{\partial v}{\partial u}\neq 0\\ u(x+y)\frac{\partial v}{\partial x}+u(x-y)\frac{\partial v}{\partial y}+(x^2+y^2)\frac{\partial v}{\partial u}=0\\ \frac{dx}{u(x+y)}=\frac{dy}{u(x-y)}=\frac{du}{x^2+y^2}\\ \frac{dx}{u(x+y)}=\frac{dy}{u(x-y)}\\ y^{\prime}=\frac{x-y}{x+y}\\ y^{\prime}=1-\frac{2y}{x}\cdot\frac{1}{1+\frac{y}{x}}\\ z(x)=\frac{y}{x};y=z\cdot x;y^{\prime}=z^{\prime}\cdot x+z\\ z^{\prime}\cdot x+z=1-2z\cdot\frac{1}{1+z}\\ z^{\prime}\cdot x+z+2z\cdot\frac{1}{1+z}-1=0\\ \frac{dz}{dx}\cdot x+z+2z\cdot\frac{1}{1+z}-1=0\\ xdz+zdx+2z\cdot\frac{1}{1+z}dx-dx=0\\ xdz+(z+2z\cdot\frac{1}{1+z}-1)dx=0\\ xdz+\frac{z^2+2z-1}{z+1}dx=0|:x\frac{z^2+2z-1}{z+1}\neq 0\\ \frac{(z+1)dz}{z^2+2z-1}+\frac{dx}{x}=0\\ \frac{1}{2}\cdot\frac{d(z^2+2z+1)}{z^2+2z-1}+\frac{dx}{x}=0\\ \frac{1}{2}\ln|z^2+2z-1|+\ln|x|=\ln C\\ \ln x\sqrt{z^2+2z-1}=\ln C\\ x\sqrt{z^2+2z-1}=C.\\ \frac{dx}{u(x+y)}=\frac{dy}{u(x-y)}\\\\ \frac{xdx-ydy}{ux(x+y)-uy(x-y)}=\frac{du}{x^2+y^2}\\ \frac{1}{2}\cdot\frac{d(x^2-y^2)}{u(x^2+y^2)}=\frac{du}{x^2+y^2}\\ \frac{1}{2}\cdot d(x^2-y^2)=udu\\ \frac{1}{2}\cdot (x^2-y^2)-\frac{u^2}{2}=C\\ x^2-y^2-u^2=C\\ f(x\sqrt{(y/x)^2+2(y/x)-1},\ x^2-y^2-u^2)=0\text{ --- general solution of our equation}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS