y(x+4)(y+z)dx−x(y+3z)dy+2xydz=0X=(P,Q,R) — vector field.X⋅curl X=0X=(y(x+4)(y+z),−x(y+3z),2xy)curl X=det⎣⎡i∂x∂Pj∂y∂Qk∂z∂R⎦⎤==5xi+(2y+yx)j+(−9y−7z−2xy−xz)kWe can check that X⋅curl X=0.Let x=const. Then:−x(y+3z)dy+2xydz=0∣:(−x)(y+3z)dy−2ydz=0∣:dyy+3z−2yz′=0∣:2y=0z′=2yy+3zz′=21+23⋅yzt(y)=yz; z=t⋅y; z′=t′⋅y+t.t′⋅y+t=21+23tt′⋅y−21⋅t−21=0dydty−21t−21=0ydt−21tdy−21dy=0ydt+(−21t−21)dy=0∣:y(−21t−21)=0−1/2t−1/2dt+ydy=0−2t−1dt+ydy=0∣∫−2ln∣t−1∣+ln∣y∣=lnCln(t−1)2∣y∣=lnC(t−1)2y=CU(x,y,z)=(z/y−1)2y=C.∃μ: μQ=∂y∂Q.∂y∂Q=y(z/y−1)7−z−yμ=y(z/y−1)7−z−y⋅x(y+3z)1=xy(y+3z)(z/y−1)7z+y.k=μP−∂x∂U.∂x∂U=0k=μPk=x(y+3z)(z/y−1)7(y+z)2(x+4)∂x∂U+k=0∫kdx=CU(x,y,z)=x(y+3x)(z/y−1)7(x+4)(y+z)2=C.
Comments