Question #175570

Ydx+(y-x)dy


1
Expert's answer
2021-03-30T15:48:43-0400
ydx+(yx)dy=0ydx+(y-x)dy=0

dx=yxydydx=-\dfrac{y-x}{y}dy


dxdy=1+xy\dfrac{dx}{dy}=-1+\dfrac{x}{y}

Let x=uy.x=uy. Then


dxdy=u+yudy\dfrac{dx}{dy}=u+y\dfrac{u}{dy}

Substitute


u+ydudy=1+uu+y\dfrac{du}{dy}=-1+u

du=dyydu=-\dfrac{dy}{y}

Integrate both sides


du=dyy\int{du}=-\int{\dfrac{dy}{y}}

u=lny+Cu=-\ln{|y|}+C

xy=lny+C\dfrac{x}{y}=-\ln{|y|}+C



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS