y" - y = e2x[3 tan e+ 3 (sec e*)2]
"\\displaystyle\ny'' - y = e^{2x}\\left(3\\tan{e}+ \\frac{3(\\sec{e})}{2}\\right) = Ce^{2x} \\\\\n\nm^2 - 1 = 0 \\\\\n\n(m + 1)(m - 1) = 0\\\\\n\nm = -1,\\,\\, 1\\\\\n\n\\textsf{The complementary factor is}\\,\\,\\, y = A\\cosh{x} + B\\sinh{x} \\\\\n\n\\textsf{The particular integral is}\\,\\,\\, y = De^{2x} \\\\\/\n\ny'' = 4De^{2x},\\,\\, y = De^{2x} \\\\\n\n4De^{2x} - De^{2x} = Ce^{2x} \\\\\n\n3De^{2x} = Ce^{2x} \\\\\n\nD = \\frac{C}{3}\\\\\n\ny = \\frac{e^{2x}\\left(3\\tan{e}+ \\frac{3(\\sec{e})}{2}\\right)}{3} \\\\\n\n\\therefore y = C.F + P.I \\\\\n\ny = A\\cosh{x} + B\\sinh{x} + \\frac{e^{2x}\\left(3\\tan{e}+ \\frac{3(\\sec{e})}{2}\\right)}{3}.\\\\"
Comments
Dear Isaax Numoah, the initial math formulae in the question were not clear enough. Please type correctly and submit a new question with a help of the panel.
y" - y = e2x[3 tan e+ 3 (sec e)^2]
Leave a comment