Comparing with Pp+Qq=R, we get
P=x−y,Q=y−x−z,R=z
The corresponding system of equations is
x−ydx=y−x−zdy=zdz
x−y+y−x−z+zdx+dy+dz
0dx+dy+dz=0d(x+y+z)
d(x+y+z)=0 x+y+z=c1 is the first independent integral.
Consider
x−y−y+x+z+zdx−dy+dz
2(x−y+z)dx−dy+dz=2(x−y+z)d(x−y+z)
2(x−y+z)d(x−y+z)=zdz
x−y+zd(x−y+z)=2⋅zdz
ln(x−y+z)=ln(z2)+lnc2 z2x−y+z=c2 is the second independent integral.
The general solution is
ϕ(x+y+z,z2x−y+z)=0Let x+y+z=t and z2x−y+z=u.
ϕ(t,u)=0
For z=1 we get t=x+y+1 and u=12x−y+1
Then
x=2t+u−1,y=2t−u Given x2+y2=1
(2t+u)2−(t+u)+1+(2t−u)2=1
t(t−2)+u(u−2)=0 Hence
(x+y+z)(x+y+z−2)
+(z2x−y+z)(z2x−y+z−2)=0
Comments