Use Theorem 7.1.1 to find ℒ{f(t)}.
(Write your answer as a function of s.)
f(t) = (t + 1)3
Note: f(t)=(t+1)3=t3+3t2+3t+1Recall L(tn)=n!sn+1Then L{f(t)}=L{t3+3t2+3t+1}=L{t3}+L{3t2}+L{3t}+L{1}L{f(t)}=L{t3}+3L{t2}+3L{t}+L{1}=3!s4+3⋅2!s3+3s2+1s=6s4+6s3+3s2+1s∴L{f(t)}=6+6s+3s2+s3s4\text{Note: } f(t)= (t+1)^3 = t^3 +3t^2 +3t +1\\ \text{Recall } \mathcal{L}(t^n) = \frac{n!}{s^{n+1}}\\ \text{Then } \mathcal{L}\{f(t)\} = \mathcal{L}\{t^3 + 3t^2 +3t +1\} = \mathcal{L} \{t^3\} + \mathcal{L} \{3t^2\} + \mathcal{L} \{3t\} +\mathcal{L} \{1\}\\ \mathcal{L} \{f(t)\} = \mathcal{L} \{t^3\} +3\mathcal{L} \{t^2\} +3\mathcal{L} \{t\} +\mathcal{L} \{1\} = \frac{3!}{s^{4}}+ \frac{3\cdot 2!}{s^{3}} + \frac{3}{s^2} + \frac{1}{s} = \frac{6}{s^4} + \frac{6}{s^3} + \frac{3}{s^2} + \frac{1}{s}\\ \therefore \mathcal{L} \{f(t)\} = \frac{6+6s+3s^2+s^3}{s^4}Note: f(t)=(t+1)3=t3+3t2+3t+1Recall L(tn)=sn+1n!Then L{f(t)}=L{t3+3t2+3t+1}=L{t3}+L{3t2}+L{3t}+L{1}L{f(t)}=L{t3}+3L{t2}+3L{t}+L{1}=s43!+s33⋅2!+s23+s1=s46+s36+s23+s1∴L{f(t)}=s46+6s+3s2+s3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments