Use appropriate algebra and Theorem 7.2.1 to find the given inverse Laplace transform. (Write your answer as a function of t.)
ℒ−1{(s/(s2 + 3s − 4)}
ss2+3s−4=s(s−1)(s+4)=\frac{s}{s^2+3s-4}=\frac{s}{(s-1)(s+4)}=s2+3s−4s=(s−1)(s+4)s=
=As−a+Bs+4=(A+B)s+4A−B(s−1)(s+4)=\frac{A}{s-a}+\frac{B}{s+4}=\frac{(A+B)s+4A-B}{(s-1)(s+4)}=s−aA+s+4B=(s−1)(s+4)(A+B)s+4A−B
we have a system:
{A+B=14A−B=0\begin{cases} A+B=1\\ 4A-B=0 \end{cases}{A+B=14A−B=0
5A=15A=15A=1
A=15A=\frac{1}{5}A=51
B=45B=\frac{4}{5}B=54
ss2+3s−4=15(s−1)+45(s+4)\frac{s}{s^2+3s-4}=\frac{1}{5(s-1)}+\frac{4}{5(s+4)}s2+3s−4s=5(s−1)1+5(s+4)4
L−1(ss2+3s−4)=L−1(15(s−1))+L−1(45(s+4))=L^{-1}(\frac{s}{s^2+3s-4})=L^{-1}(\frac{1}{5(s-1)})+L^{-1}(\frac{4}{5(s+4)})=L−1(s2+3s−4s)=L−1(5(s−1)1)+L−1(5(s+4)4)=
=15et+45e−4t=\frac{1}{5}e^t+\frac{4}{5}e^{-4t}=51et+54e−4t
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments