Question #177426

Use appropriate algebra and Theorem 7.2.1 to find the given inverse Laplace transform. (Write your answer as a function of t.)

−1{(s/(s2 + 3s − 4)}


1
Expert's answer
2021-04-15T06:56:35-0400

ss2+3s4=s(s1)(s+4)=\frac{s}{s^2+3s-4}=\frac{s}{(s-1)(s+4)}=


=Asa+Bs+4=(A+B)s+4AB(s1)(s+4)=\frac{A}{s-a}+\frac{B}{s+4}=\frac{(A+B)s+4A-B}{(s-1)(s+4)}


we have a system:


{A+B=14AB=0\begin{cases} A+B=1\\ 4A-B=0 \end{cases}


5A=15A=1

A=15A=\frac{1}{5}

B=45B=\frac{4}{5}


ss2+3s4=15(s1)+45(s+4)\frac{s}{s^2+3s-4}=\frac{1}{5(s-1)}+\frac{4}{5(s+4)}


L1(ss2+3s4)=L1(15(s1))+L1(45(s+4))=L^{-1}(\frac{s}{s^2+3s-4})=L^{-1}(\frac{1}{5(s-1)})+L^{-1}(\frac{4}{5(s+4)})=


=15et+45e4t=\frac{1}{5}e^t+\frac{4}{5}e^{-4t}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS